How Does the Feynman Propagator Define Particle Movement in Quantum Mechanics?

Click For Summary
The Feynman propagator, denoted as Δ_F(x), represents the probability amplitude for a scalar particle with mass m to traverse a space-time interval x. It is derived by integrating the function Δ_+(x) for forward time and Δ_+(-x) for backward time, incorporating all possible 3-momenta of the particle. The propagator can also be expressed using 4-momenta, leading to the equation involving e^{iq·x}/(q² + m² - iε). For non-scalar particles, the propagator is modified by a polynomial dependent on the particle's spin. Overall, the Feynman propagator is essential for understanding particle movement in quantum mechanics.
Messages
19,838
Reaction score
10,850
Definition/Summary

The Feynman propagator \Delta_F(x) is the propagator (the probability amplitude) for a scalar particle of non-zero mass, m, to travel over a space-time interval x.

It is obtained by integrating, over all possible 3-momentums \mathbf{q} of a particle of mass m, the function \Delta_+(x) if x is "forward in time" or the function \Delta_+(-x) if x is "backward in time".

This is the same as integrating, over all possible 4-momentums q (of any mass, and including those with negative energy), the function e^{iq\cdot x}/(q^2\ +\ m^2\ -\ i\varepsilon)

The propagator for a non-scalar particle is P(-i\frac{\partial}{\partial x})\Delta_F(x) where P is a polynomial dependent on the spin of the particle.

Equations

DEFINITIONS:
x\text{ is a 4-vector: }x=(\mathbf{x},t)

\Delta_+(x)\ =\ \frac{1}{(2\pi)^3}\ \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} d^3\mathbf{q}\ \frac{e^{i(\mathbf{q}\cdot\mathbf{x}\ -\ \sqrt{\mathbf{q}^2\ +\ m^2}\,t)}}{2\sqrt{\mathbf{q}^2\ +\ m^2}}

Step function:
\theta(t)\ =\ \frac{-1}{2\pi i}\int_{-\infty}^{\infty} ds\,\frac{e^{-ist}}{s\ +\ i\,\varepsilon}\ =\ 1\text{ if }t > 0\ \text{ but }=\ 0\text{ if }t < 0

Feynman propagator:
\Delta_F(x)\ =\ i(\theta(x)\Delta_+(x)\ +\ \theta(-x)\Delta_+(-x))

\ =\ i\Delta_+(x)\text{ if }t > 0\ \text{ but }=\ i\Delta_+(-x)\text{ if }t < 0

=\ \frac{1}{(2\pi)^4}\ \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\ d^4q\ e^{iq\cdot x}\ \left(\frac{1}{q^2\ +\ m^2\ -\ i\varepsilon}\right)

Propagator for spin-1/2 particle:
[(-i\gamma_{\mu}\frac{\partial}{\partial x^{\mu}}\ +\ m)\beta]\Delta_F(x)

=\ \frac{1}{(2\pi)^4}\ \int\int\int\int\ d^4q\ e^{iq\cdot x}\ \left(\frac{[(-i\gamma_{\mu}q^{\mu}\ +\ m)\beta]}{q^2\ +\ m^2\ -\ i\varepsilon}\right)

=\ \frac{1}{(2\pi)^4}\ \int\int\int\int\ d^4q\ e^{iq\cdot x}\ \left(\frac{1}{\gamma_{\mu}q^{\mu}\ -\ m\ -\ i\varepsilon}\right)

Extended explanation

Re-calculation of ∆+(-x):

\Delta_+(-x)\ =\ \frac{1}{(2\pi)^3}\ \int d^3\mathbf{q}\ \frac{e^{i(\mathbf{q}\cdot(\mathbf{-x})\ -\ \sqrt{\mathbf{q}^2\ +\ m^2}\,(-t))}}{2\sqrt{\mathbf{q}^2\ +\ m^2}}

So, replacing \mathbf{q} by -\mathbf{q} and d^3\mathbf{q} by -d^3\mathbf{q}:

\Delta_+(-x)\ =\ \frac{-1}{(2\pi)^3}\ \int d^3\mathbf{q}\ \frac{e^{i(\mathbf{q}\cdot\mathbf{x}\ +\ \sqrt{\mathbf{q}^2\ +\ m^2}\,t)}}{2\sqrt{\mathbf{q}^2\ +\ m^2}}

Calculation of the Feynman propagator:

\Delta_F(x)\ =\ i(\theta(x)\Delta_+(x)\ +\ \theta(-x)\Delta_+(-x))

=\ \frac{-1}{(2\pi)^4}\ \int\ d^3\mathbf{q}\ \frac{e^{i\,\mathbf{q}\cdot\mathbf{x}}}{ 2\sqrt{\mathbf{q}^2\ +\ m^2}}\ \left(\int ds\, \frac{e^{-i(\sqrt{\mathbf{q}^2\ +\ m^2}\ +\ s)\,t}}{s\ +\ i\,\varepsilon}\ -\ \int ds\,\frac{e^{i(\sqrt{\mathbf{q}^2\ +\ m^2}\ +\ s)\,t}}{s\ +\ i\,\varepsilon}\right)

=\ \frac{-1}{(2\pi)^4}\ \int\ d^3\mathbf{q}\ \frac{e^{i\,\mathbf{q}\cdot\mathbf{x}}}{ 2\sqrt{\mathbf{q}^2\ +\ m^2}}\ \int dq_0\ \left(\frac{e^{-iq_0t}}{q_0\ - \sqrt{\mathbf{q}^2\ +\ m^2}\ +\ i\varepsilon}\ \ +\ \ \frac{e^{-iq_0t}}{-q_0\ -\ \sqrt{\mathbf{q}^2\ +\ m^2}\ +\ i\varepsilon}\right)

where a new "energy" variable q_0 has been substituted for s+\sqrt{(\mathbf{q}^2\ +\ m^2)} in the left part, and for -s-\sqrt{(\mathbf{q}^2\ +\ m^2)} in the right part

=\ \frac{1}{(2\pi)^4}\ \int\int\ d^3\mathbf{q}\ dq_0\ e^{i(\,\mathbf{q}\cdot\mathbf{x}\ -\ q_0t)}\ \left(\frac{1}{\mathbf{q}^2\ -\ q_0^2\ +\ m^2\ -\ i\varepsilon}\right)

which, writing q as the 4-vector (\mathbf{q},q_0), is:

=\ \frac{1}{(2\pi)^4}\ \int\ d^4q\ e^{iq\cdot x}\ \left(\frac{1}{q^2\ +\ m^2\ -\ i\varepsilon}\right)

* This entry is from our old Library feature. If you know who wrote it, please let us know so we can attribute a writer. Thanks!
 
Physics news on Phys.org
Thanks for the overview of Feynman Propagator
 
I do not have a good working knowledge of physics yet. I tried to piece this together but after researching this, I couldn’t figure out the correct laws of physics to combine to develop a formula to answer this question. Ex. 1 - A moving object impacts a static object at a constant velocity. Ex. 2 - A moving object impacts a static object at the same velocity but is accelerating at the moment of impact. Assuming the mass of the objects is the same and the velocity at the moment of impact...

Similar threads

  • · Replies 29 ·
Replies
29
Views
1K
Replies
19
Views
3K
  • · Replies 5 ·
Replies
5
Views
689
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
593
  • · Replies 1 ·
Replies
1
Views
487
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K