How Does the Ising Model Apply to Lattice Gas Systems?

Click For Summary
SUMMARY

The discussion focuses on applying the Ising model to lattice gas systems, specifically in the context of modeling adsorption with two types of atoms per site. The participants clarify the Hamiltonian formulation, emphasizing the contributions of states ##S_{11}## and ##S_{10}##, with energies defined as ##2\varepsilon - J## and ##\varepsilon## respectively. They derive the partition function ##Z_G## and the average occupancy ##\langle n \rangle## using statistical mechanics principles, correcting initial misconceptions about coupling constants and interactions. The conversation highlights the importance of clear notation and understanding the implications of non-interacting systems in statistical physics.

PREREQUISITES
  • Understanding of the Ising model in statistical mechanics
  • Familiarity with lattice gas models and their applications
  • Knowledge of Hamiltonian mechanics and energy states
  • Proficiency in statistical thermodynamics, particularly partition functions
NEXT STEPS
  • Research the derivation of the Ising model and its applications in lattice systems
  • Study the implications of non-interacting particles in statistical mechanics
  • Explore advanced topics in statistical physics, such as the Grand Canonical Ensemble
  • Examine case studies involving adsorption phenomena in lattice gas models
USEFUL FOR

Researchers, physicists, and students in statistical mechanics, particularly those focusing on lattice gas systems and adsorption processes. This discussion is beneficial for anyone looking to deepen their understanding of the Ising model's applications in complex systems.

Jacques_Leen
Messages
11
Reaction score
0
Homework Statement
Let a surface be in contact with a gas at temperature ##T##. The surface consists of ##N## sites, which can absorb atoms. Each site can absorb up to ##2## atoms. The binding Energy gain for each atom absorbed is ##-\varepsilon##. If ##2## atoms are absorbed the amount of Energy gained is reduced by a term ##J## due to coupling.

1) Find the ##\mathcal{H}##
2) let ##N=1## then write the grand partition function ##Z_g##
3) let ##N=1## then find the average number ##\langle n \rangle## of atoms absorbed
4) let ##N > 1 \text{ and } J =0## write ##Z_g##
5) let ##N > 1 \text{ and } J =0##, find ##\langle n \rangle##
Relevant Equations
$$\mathcal{H} = - \lambda \sum_{\langle i,j \rangle} N_i N_j$$

$$Z_g = \sum_{i=1}^{N} e^{-\beta (n_i \mu - E_i)} $$

$$ \langle n \rangle = \frac{\partial \Phi_G}{\mu}$$
Hi everyone,

even before addressing the following points I have a serious issue in understandig the text of the Exercise.My idea was to model this system with a lattice gas. Given that each site can host 2 atoms I have 3 possibilities for each site: I'll call'em ##S_{11} S_{00}## and ## S_{10}##. The terms ##S_{00}## do not contribute, whereas energies associated to ##S_{11}## and ## S_{10}## are ##2\varepsilon −J## and ##\varepsilon##. In order to determine the ##\mathcal{H}## I now have to take into account the coupling constants associated to every neighbors sites, i.e. ##k_1,k_2,k_3## because there are 3 possible combination that allow for a coupling element given that the terms which contribute are ##S_{11}## and ## S_{10}##.*

This seems over complicated though and I fear I am missing something in the assignement. Any sort of insight or help is more than welocome.*I hope the notation now is fine ... I swear it wal ok in the preview mode but somehow it got all mixed up
 
Last edited:
Physics news on Phys.org
To my mind, the coupling ##J## refers to the case when two atoms occupy one adsorption site, i.e., there is no interaction between atoms occupying different adsorption sites. So there is no need for Ising-model considerations.
 
You're right,
but I have to admit that the text here war really not clear enough (at least to my opinion). BTW I foung a similar problem in the Statistical and Thermal Physics by Gould and Tobochnik (here). The problem here is an extension of example 4.5* in chapter 4. I will discuss my solution later

* In the book the authors explicitly state there is no coupling between the elements of the lattice
 
A rather important notation remark before I discuss my solution,
$$\langle n \rangle = - \frac{\partial \Phi_G}{\partial \mu} .$$
I seem to have skipped both the sign and the differentiation in the statement.

1) If I have ##N_{11}## sites hosting two atoms and ##N_{10}## absorbing one then the ##\mathcal{H}## should be:
$$ \mathcal{H}= N_{11} (2 \varepsilon - J) + N_{10}(\varepsilon) $$
2) Hence if there is a total of ##N=1## sites then there are 3 possible states
$$S_{11} \rightarrow E = 2 \varepsilon - J \text{ } S_{10} \rightarrow E = \varepsilon \text{ } S_{00} \rightarrow E = 0$$
summing on those 3 states I obtain
$$ Z_G = 1 + e^{- \beta (2 \varepsilon - J - 2 \mu)} + e^{- \beta (\varepsilon - \mu)}$$

3) from ## \langle n \rangle = - \frac{\partial \Phi_G}{\partial \mu} ## and ## \Phi_G = -1/\beta \ln(Z_G)## I get:
$$\langle n \rangle = 1/\beta \frac{\partial \ln(Z_G) }{\partial \mu}$$
which yields:
$$ \langle n \rangle = \frac{e^{- \beta (\varepsilon - \mu) }+ 2e^{- \beta (2 \varepsilon - J - 2 \mu)} }{Z_G}$$

4-5) the procedure is similar as to points 2-3 disregarding ##J## and accounting for the terms ##N_{11}## and ##N_{10}##. I'll post the solution:

$$Z_G = 1 + e^{- \beta (2N_{11} \varepsilon - 2 N_{11}\mu)} + e^{- \beta (N_{10}\varepsilon - N_{10} \mu)}$$
$$ \langle n \rangle = \frac{2N_{11}e^{- \beta (2 N_{11} \varepsilon - 2 \mu)} + N_{10}e^{- \beta (N_{10}\varepsilon - \mu)}}{Z_G}$$

criticism of any sort, corrections if you see any mistake is more than welcome
 
Lord Jestocost said:
I was thinking about my solution to the problem for ##N >1## sites this morning and realized it was all wrong. Thanks for the hint! Grand Free Energy scales in an extensive fashion with the number of sites, if there is no interaction. As such if
$$Z_{G1} = 1 + e^{ \beta (2 \varepsilon +2 \mu)} + e^{\beta (\varepsilon + \mu)}$$
in the ##J=0## limit, then:
$$Z_{GN} = (1 + e^{ \beta (2 \varepsilon +2 \mu)} + e^{\beta (\varepsilon + \mu)}) ^N$$
and
$$ \langle n \rangle = N \frac{e^{\beta (\varepsilon + \mu) }+ 2e^{ \beta (2 \varepsilon + 2 \mu)} }{Z_{GN}} $$

I also corrected the signs, for I have misinterpreted the exchange of Energy from the text
 
Last edited:

Similar threads

  • · Replies 0 ·
Replies
0
Views
873
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
12K