MHB How Does the Schwarz Inequality Apply to Fourier Coefficients in C[-pi, pi]?

  • Thread starter Thread starter Poirot1
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
The discussion focuses on the application of the Schwarz inequality to Fourier coefficients in the space of continuous functions C[-π, π]. It establishes that the Fourier coefficient h(n) of a function f satisfies the inequality |h(n)| ≤ (1/2π)(||f|| ||e^int||). There is a correction regarding the calculation of ||e^int||, which leads to the conclusion that |h(n)| ≤ (1/√(2π)) ||f||. Participants clarify their misunderstandings about the calculations, ultimately agreeing on the correct expression for the inequality. The conversation emphasizes the importance of accurate mathematical derivations in applying the Schwarz inequality.
Poirot1
Messages
243
Reaction score
0
Let C[-pi,pi] be the set of continuous function from [-pi,pi] to C. Endow this with usual inner product (<f,g>= integral from -pi to pi of f multiplied by g conjugate, and let ||.|| be the corresponding norm).
Let h(n) be Fourier coefficent of fNow, |h(n)|<_ 1/2pi( ||f||.||e^int||) by schwarz inequaity

=1/pi . 1/ 2^(0.5) ||f|| since ||e^int|| =(pi +pi)^0.5

Do you agree?
 
Last edited:
Physics news on Phys.org
Re: use of schwarz inequality

Poirot said:
Let C[-pi,pi] be the set of continuous function from [-pi,pi] to C. Endow this with usual inner product (<f,g>= integral from -pi to pi of f multiplied by g conjugate, and let ||.|| be the corresponding norm).
Let h(n) be Fourier coefficent of fNow, |h(n)|<_ 1/2pi( ||f||.||e^int||) by schwarz inequaity

=1/pi . 1/ 2^(0.5) ||f|| since ||e^int|| =(pi +pi)^0.5

Do you agree?

Hi Poirot!

I agree, except for a small calculation mistake.

$$|h(n)| \le \frac 1{2\pi} (||f|| \cdot ||e^{int}||) = \frac 1{2\pi} (||f|| \cdot \sqrt{2\pi}) = \sqrt{2\pi}||f||$$
 
Re: use of schwarz inequality

I like Serena said:
Hi Poirot!

I agree, except for a small calculation mistake.

Thanks for replying but I don't agree. We have (2pi)^0.5 multiplied by 1/(2pi). This is (2pi)^(-0.5), and not (2pi)^(0.5) as you suggest.
 
Re: use of schwarz inequality

Poirot said:
Thanks for replying but I don't agree. We have (2pi)^0.5 multiplied by 1/(2pi). This is (2pi)^(-0.5), and not (2pi)^(0.5) as you suggest.

Ah, my bad - now I've made a similar mistake as well.

So it should be
$$|h(n)| \le \frac 1 {\sqrt{2\pi}} ||f||$$
instead of the
$$|h(n)| \le \frac 1 \pi \cdot \frac 1 {2^{0.5}} ||f||$$
that you had.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K