MHB How have we concluded that X is an inductive set?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Set
Click For Summary
The discussion centers on proving that the set X, defined as containing natural numbers n such that for all m, if m is in n, then m is a subset of n, is an inductive set. The proof establishes that the empty set is in X and that if n is in X, then n' (the successor of n) is also in X. The key point is that if m is in n, it follows that m is also in n', thereby satisfying the condition for membership in X. The participants clarify that showing m ⊆ n implies m ⊆ n' is sufficient for concluding n' is in X. The discussion concludes with an affirmation of understanding regarding the inductive property of the set.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Nerd)

I am looking at the proof of the following sentence:

For any natural numbers $m,n$ it holds that:

$$n \in m \rightarrow n \subset m$$

Proof:

We define the set $X=\{ n \in \omega: \forall m (m \in n \rightarrow m \subset n)$ and it suffices to show that $X$ is an inductive set.
Then, $\varnothing \in X$.
Let $n \in X$.
We want to show that $n'=n \cup \{ n \} \in X$.
We pick a $m \in n'=n \cup \{ n \}$.
Then $m \in n$ or $m \in \{ n \}$.
  • If $m \in n$ and since $n \in X$, we have that $m \subset n$
  • If $m \in \{ n \} \rightarrow m=n \rightarrow m \subset n$

So, $n' \in X$ and therefore $X$ is an inductive set.I haven't understood why, having shown that $m \subset n$, we have concluded that $n' \in X$. (Worried)
Could you explain it to me? (Thinking)
 
Physics news on Phys.org
In order to show that $n' \in X$ don't we have to show that $m \in n' \rightarrow m \subset n'$ ? Or am I wrong? (Thinking)
 
In both cases in the proof, we have $m\subseteq n$. This trivially implies $m\subseteq n'$.
 
Evgeny.Makarov said:
In both cases in the proof, we have $m\subseteq n$. This trivially implies $m\subseteq n'$.

I see (Nod) Thank you very much! (Happy)
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...

Similar threads

Replies
5
Views
1K
Replies
2
Views
2K
Replies
30
Views
5K
Replies
6
Views
2K
Replies
8
Views
2K