MHB How is √2 μ Interpreted Geometrically?

  • Thread starter Thread starter Juliayaho
  • Start date Start date
  • Tags Tags
    Measure
Juliayaho
Messages
13
Reaction score
0
This is part 2 of a question... I already solved part 1 but I can't seem to be able to solve this one.
Interpret the measure √2 μ geometrically?

Any ideas... This is from real analysis class

Thanks in advance!
 
Physics news on Phys.org
Re: Measure... Geometrically?

Juliayaho said:
This is part 2 of a question... I already solved part 1 but I can't seem to be able to solve this one.
Interpret the measure √2 μ geometrically?

Any ideas... This is from real analysis class

Thanks in advance!

What is [math]\displaystyle \mu [/math] representing?
 
Re: Measure... Geometrically?

The unique positive regular measure on B(R^2) such that for all f in C_c(R^2) λf= ∫_R^2 f dµ

- - - Updated - - -

Prove It said:
What is [math]\displaystyle \mu [/math] representing?

The unique positive regular measure on B(R^2) such that for all f in C_c(R^2) λf= ∫_R^2 f dµ

- - - Updated - - -

Juliayaho said:
The unique positive regular measure on B(R^2) such that for all f in C_c(R^2) λf= ∫_R^2 f dµ

- - - Updated - - -
The unique positive regular measure on B(R^2) such that for all f in C_c(R^2) λf= ∫_R^2 f dµ

λf=∫(from R to Riemann) f(tt)dt for all f in C_c(R^2).
 
Re: Measure... Geometrically?

I could be wrong, but it seems to me that this question could be answered much more easily (that is, intuitively) by thinking about the corresponding Riemann integral. It's a fact that if the function is Riemann integrable, then
$$\int_{ \mathbb{R}^{2}} f \, dA = \int_{ \mathbb{R}^{2}} f \, d\mu.$$
So take an example, and make $f$ really simple, say $f=1$. Then your integral is simply computing area. Your new measure, $\sqrt{2} \mu$, simply multiplies your area by $\sqrt{2}$, since constants pull out of integrals (at least, they pull out of Riemann and Lebesgue integrals). What is going on geometrically for that to happen?
 

Similar threads

Replies
2
Views
1K
Replies
3
Views
2K
Replies
4
Views
2K
Replies
5
Views
3K
Replies
7
Views
2K
Replies
2
Views
3K
Back
Top