How is the Gamma Function Related to Factorials?

  • Context: MHB 
  • Thread starter Thread starter skate_nerd
  • Start date Start date
  • Tags Tags
    Integral Series
Click For Summary

Discussion Overview

The discussion revolves around the Gamma function and its relationship to factorials, specifically addressing a calculus problem involving the definition of the Gamma function, properties, and proofs related to its values at specific points. The scope includes theoretical exploration and mathematical reasoning.

Discussion Character

  • Homework-related
  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • Some participants express confusion about how to approach the proof of the property \(\Gamma(r+1)=(r+1)\Gamma(r)\) and suggest using integration by parts.
  • One participant attempts integration by parts and derives an expression but feels uncertain about the next steps.
  • Another participant points out that evaluating the bounds of the integral leads to a result that supports the proof.
  • There is a discussion about how to relate \(\Gamma(n)\) to \(n!\) and whether substituting \(n\) into \(\Gamma(r)\) is valid.
  • One participant clarifies the definitions of the Gamma function and the factorial function, noting the potential for confusion between the two.
  • Another participant proposes using mathematical induction to prove that \(\Gamma(n) = n!\) for natural numbers, starting with the base case.
  • Some participants discuss the teaching of induction and express a desire to learn more about proof techniques.

Areas of Agreement / Disagreement

Participants generally agree on the definitions and properties of the Gamma function and factorials, but there is uncertainty regarding the proof techniques and how to effectively relate the Gamma function to factorials. Multiple approaches and interpretations are presented without a clear consensus on the best method.

Contextual Notes

There are limitations in the discussion regarding the assumptions made about the definitions of the Gamma function and factorials, as well as the clarity of the proof techniques discussed. Some participants express uncertainty about the application of induction and integration by parts.

skate_nerd
Messages
174
Reaction score
0
I've got this funny looking problem for calculus II due tomorrow that I've been stumped on all week. It comes with three parts, and starts by stating:
Define for any \(r\geq0\) (real):
\(\Gamma(r)=\int_{0}^{\infty}{x^r}{e^{-x}}\,dx\)
a. Show that \(\Gamma(0)=1\)
This one was relatively easy. Just plugged in 0 to the r in the integral and got the answer 1.
b. Show that for any \(r\geq0\):
\(\Gamma(r+1)=(r+1)\Gamma(r)\)
When I tried solving for this all I seemed to be able to figure out was to plug the integral that is equal to \(\Gamma(r)\) into the right side of the equation, but from there I really just have no idea what to do with the \(\Gamma(r+1)\).
and if we can get there...
c. Conclude that for any \(n\in N\) (real):
\(\Gamma(n)=n!\)
I feel like solving b might give insight to this problem, but right now all I can say is that I have no idea how a third variable "n" just came into this problem.
 
Physics news on Phys.org
skatenerd said:
I've got this funny looking problem for calculus II due tomorrow that I've been stumped on all week. It comes with three parts, and starts by stating:
Define for any \(r\geq0\) (real):
\(\Gamma(r)=\int_{0}^{\infty}{x^r}{e^{-x}}\,dx\)
a. Show that \(\Gamma(0)=1\)
This one was relatively easy. Just plugged in 0 to the r in the integral and got the answer 1.
b. Show that for any \(r\geq0\):
\(\Gamma(r+1)=(r+1)\Gamma(r)\)
When I tried solving for this all I seemed to be able to figure out was to plug the integral that is equal to \(\Gamma(r)\) into the right side of the equation, but from there I really just have no idea what to do with the \(\Gamma(r+1)\).
and if we can get there...
c. Conclude that for any \(n\in N\) (real):
\(\Gamma(n)=n!\)
I feel like solving b might give insight to this problem, but right now all I can say is that I have no idea how a third variable "n" just came into this problem.
Hint for b.: use integration by parts on $\Gamma(r+1)$.

Hint for c.: induction.
 
b) $\displaystyle \Gamma(r+1)=\int_0^{\infty}x^{r+1}e^{-x}\,dx$

Using IBP, we may define:

$\displaystyle u=x^{r+1}\,\therefore\,du=(r+1)x^r\,dx$

$\displaystyle dv=e^{-x}\,\therefore\,v=-e^{-x}$

and we have...?

edit: pipped at the post! (Tmi)
 
Last edited:
Thanks for the responses, still a little confused though.
I tried working out the integration by parts for myself and ended up with this:

\(\int_{0}^{\infty}x^{r+1}e^{-x}=-e^{-x}x^{r+1}+(r+1)\int_{0}^{\infty}x^re^{-x}\)

It seems like I'm on the right track but I guess I am overlooking something.
 
What you have is actually:

$\displaystyle \int_{0}^{\infty}x^{r+1}e^{-x}=\left[-e^{-x}x^{r+1} \right]_0^{\infty}+(r+1)\int_{0}^{\infty}x^re^{-x}\,dx$
 
Woops! Guess I've never thought to solve that part out with its bounds without solving the whole integral yet.
Anyways, solving that out, I got zero, and that in turn proves what I needed to prove. Thanks a bunch!
One last question, how do you make those longer integral symbols in Latex? They look a lot nicer than these little ones... \(\int f(x) dx\)
 
I use the tags

Code:
$\displaystyle insert LaTeX code here$
 
Sorry, I just realized I still have no idea how to start part c. Can I just plug in n into \(\Gamma(r)\) ? I still just can't really see any way of relating that integral \(\Gamma(n)\) to n!.
 
skatenerd said:
I've got this funny looking problem for calculus II due tomorrow that I've been stumped on all week. It comes with three parts, and starts by stating:
Define for any \(r\geq0\) (real):
\(\Gamma(r)=\int_{0}^{\infty}{x^r}{e^{-x}}\,dx\)
a. Show that \(\Gamma(0)=1\)
This one was relatively easy. Just plugged in 0 to the r in the integral and got the answer 1.
b. Show that for any \(r\geq0\):
\(\Gamma(r+1)=(r+1)\Gamma(r)\)
When I tried solving for this all I seemed to be able to figure out was to plug the integral that is equal to \(\Gamma(r)\) into the right side of the equation, but from there I really just have no idea what to do with the \(\Gamma(r+1)\).
and if we can get there...
c. Conclude that for any \(n\in N\) (real):
\(\Gamma(n)=n!\)
I feel like solving b might give insight to this problem, but right now all I can say is that I have no idea how a third variable "n" just came into this problem.

In order to avoid misunderstanding the 'Gamma Function' is usually defined as...

$\displaystyle \Gamma (r) = \int_{0}^{\infty} x^{r-1}\ e^{- x}\ dx$ (1)

... and the 'Factorial Function' as...

$\displaystyle r! = \int_{0}^{\infty} x^{r}\ e^{- x}\ dx$ (2)

The properties of course are very similar, but it is important don't have confusion. Your example implies the Factorial Function... Kind regards $\chi$ $\sigma$
 
  • #10
You have stated that:

$\displaystyle n\in\mathbb{N}$

but have (real) after it. I am assuming we are to let n be a natural number instead.

I would begin the proof by induction by demonstrating the validity of the base case:

$\displaystyle \Gamma(1)=1!$

Using the result from part b) we may state:

$\displaystyle \Gamma(0+1)=(0+1)\Gamma(0)$

Using the result from part a) we now have:

$\displaystyle \Gamma(1)=1=1!$

So, the base case is true. Now, state the induction hypotheses $\displaystyle P_k$:

$\displaystyle \Gamma(k)=k!$

From part b) we know $\displaystyle \Gamma(k)=\frac{\Gamma(k+1)}{k+1}$

Now, substitute to finish the proof by induction.
 
  • #11
Thanks for all that you guys. And yes I don't know why I put real I did in fact mean natural. I feel like this teacher assumes we all took a class on proofs, but I haven't learned any of these things yet! Guess I'm going to have to take that class soon.
 
  • #12
Induction is sometimes taught in Precalculus, but I suppose it may be optional and up to the discretion of the instructor.

It is a very useful method, and I recommend if you have spare time to give it a look. (Handshake)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 17 ·
Replies
17
Views
5K