MHB How is the IBV3 Vector Applied in a Circle?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Circle Vector
AI Thread Summary
The discussion focuses on the application of the IBV3 vector in a circular context, particularly with a radius of 6. Points A and B are identified on the x-axis at coordinates (6, 0) and (-6, 0), respectively. The vector OC is calculated to be 6 units long, with coordinates (5, √11), leading to the vector AC being determined as (-1, √11). The cosine of the angle between vectors OA and OC is found to be 5/6, and the area of triangle OAC is calculated to be 6√11. The discussion highlights the geometric relationships and calculations involved in understanding the vector's application in a circular setting.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 1143

(a)

if $r=6$ and $\displaystyle \pmatrix { 6 \\ 0 } $ then $A$ is $6$ from $0,0$ on the $x$ axis
and if $\displaystyle \pmatrix { -6 \\ 0 }$ then $B$ is $-6$ from $0,0$ on the $x$ axis

and if $\displaystyle \pmatrix { 5 \\ \sqrt{11} }$ implies $\sqrt{5^2 + 11}=6 = OC$

(b) I presume $\vec{AC}$ can be from origin so
$\displaystyle \vec{OC}-{OA} = \vec{AC} = \pmatrix{-1 \\ \sqrt{11}}$
(c) $\displaystyle\frac{\vec{OA}\cdot\vec{OC}}{||OA||\ ||OC||}
=\frac{30}{36}=\frac{5}{6}
$

(d) area is just $\frac{5}{2}\sqrt{11}$
 
Last edited:
Mathematics news on Phys.org
So far , so good :)
 
karush said:
View attachment 1143
(a) if $r=6$ and $\displaystyle \pmatrix { 6 \\ 0 } $ then $A$ is $6$ from $0,0$ on the $x$ axis
and if $\displaystyle \pmatrix { -6 \\ 0 }$ then $B$ is $-6$ from $0,0$ on the $x$ axis

and if $\displaystyle \pmatrix { 5 \\ \sqrt{11} }$ implies $\sqrt{5^2 + 11 }=6 = OC$

(b) I presume $\vec{AC}$ can be from origin so
$\displaystyle \vec{OC}-{OA} = \vec{AC} = \pmatrix{-1 \\ \sqrt{11}}$

(c) $\displaystyle\frac{\vec{OA}\cdot\vec{OC}}{||OA||\ ||OC||}
=\frac{30}{36}=\frac{5}{6}$

(d) area is just $\frac{5}{2}\sqrt{11}$

I cannot tell how much I dislike the question. I am sure that whoever wrote it is so proud of her/himself.
Look. you know that the coordinates of $$C:\binom{5}{\sqrt{11}}$$.

So in the triangle $$\Delta OAC$$ the altitude from $$C$$ has length $$\sqrt{11}$$.

Thus what is the area of $$\Delta OAC~?$$
 
Oops it triangle ABC. area=$6\sqrt{11}$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
4
Views
11K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
4
Views
11K
Replies
2
Views
10K
Replies
2
Views
2K
Back
Top