How Is the Mixed State Density Matrix Represented in Quantum Computing?

Click For Summary

Discussion Overview

The discussion revolves around the representation of the mixed state density matrix in quantum computing, specifically focusing on the matrix representation of the mixed density matrix ##\rho_3## and its relationship to the partial trace operation. Participants explore the implications of different matrix sizes and the assumptions regarding the basis states used in the representation.

Discussion Character

  • Debate/contested
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • Some participants question whether ##\rho_3## is an 8x8 matrix or a 2x2 matrix, with one participant suggesting it should be a 2x2 matrix due to the partial trace operation over the ##i,j## subsystem.
  • Others argue that ##\rho_3## is derived from a sum over several outer products, implying it describes a system of three spins, which would suggest a larger matrix size.
  • There is a claim that the complete density matrix should include no repeated indices or should sum over both ##V## and ##V^*## indices, indicating a more complex structure than a simple 2x2 matrix.
  • Some participants express uncertainty about how to represent the density matrix ##\rho_0## as a 2x2 matrix, given the presence of the ##\ket{i,j}## terms, suggesting confusion over the dimensionality of the matrices involved.
  • One participant clarifies that ##\rho_0## is the initial state and not an example of a term that would appear in ##\rho_3##, emphasizing the distinction between the final state and the partial trace operation.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the dimensionality of ##\rho_3##, with multiple competing views regarding its representation and the implications of the partial trace operation. The discussion remains unresolved regarding the correct interpretation of the density matrices involved.

Contextual Notes

There are limitations in the discussion regarding the assumptions about the orthonormality of the basis states and the specific definitions of the density matrices, which are not fully clarified. The relationship between the initial state and the final state, as well as the implications of the partial trace operation, are also points of contention.

thatboi
Messages
130
Reaction score
20
Hi all,
I am having trouble visualizing the matrix representation of the mixed density matrix from the following post (specifically from the accepted answer): https://quantumcomputing.stackexcha...ap-test-and-density-matrix-distinguishability
That is, for ##\rho_3=\frac{1}{4}\frac{1}{2^{2n}}\sum_{i,j}\left(\sum_{a,b}|a,i,j\rangle\langle b,i,j|+\sum_{a,b}(-1)^b|a,i,j\rangle\langle b,j,i|+\sum_{a,b}(-1)^a|a,j,i\rangle\langle b,i,j|+\sum_{a,b}(-1)^{a\oplus b}|a,j,i\rangle\langle b,j,i|\right)##. The user makes the statement: "We're interested by the diagonal coefficients of ##\rho_{3}## that can be written as |0,i,j⟩⟨0,i,j|. Summing them would give us the probability of measuring |0⟩. " I just wanted to confirm if ##\rho_{3}## was still an 8x8 matrix, and if so, is there an implicit assumption that the ##{i,j}## states form an orthonormal basis of their 4x4 Hilbert space?
Thanks.
 
Physics news on Phys.org
##\rho_3## should be the "partial trace" of the original density matrix over the ##i##, ##j## subsystem. It's sort of like how the Ricci tensor isn't the full trace of the Riemann curvature tensor (which would give the scalar curvature.) So ##\rho_3## should be a 2 by 2 matrix, and at a practical level you could think of ##\rho_3## (as you defined it) as the density matrix that completely characterizes observables involving the first spin index (##a##).
 
Couchyam said:
##\rho_3## should be the "partial trace" of the original density matrix over the ##i##, ##j## subsystem. It's sort of like how the Ricci tensor isn't the full trace of the Riemann curvature tensor (which would give the scalar curvature.) So ##\rho_3## should be a 2 by 2 matrix, and at a practical level you could think of ##\rho_3## (as you defined it) as the density matrix that completely characterizes observables involving the first spin index (##a##).
Hi,
why is ##\rho_{3}## a 2x2 matrix? I thought the expression for ##\rho_{3}## was just a sum over several outer products ##\ket{a,i,j}\bra{a,i,j}## where each term describes a system of 3 spins.
 
thatboi said:
Hi,
why is ##\rho_{3}## a 2x2 matrix? I thought the expression for ##\rho_{3}## was just a sum over several outer products ##\ket{a,i,j}\bra{a,i,j}## where each term describes a system of 3 spins.
The complete density matrix would have no repeated indices, or would include a sum over both ##V## indices as well as ##V^*## indices:
$$
\hat\rho_0 = \rho_{a,i,j; b,k,\ell} |a,i,j\rangle\langle b, k, \ell| \equiv \sum_{a,i,j,b,k,\ell} \rho_{a,i,j; b,k,\ell} |a, i, j\rangle\langle b, k, \ell|
$$
where ##\rho_{a,i,j; b,k,\ell} = \rho^*_{b,k,\ell; a,i,j}##.
 
thatboi said:
why is ##\rho_{3}## a 2x2 matrix?
Because it describes one qubit, i.e., it is a density matrix on a 2-dimensional Hilbert space.

The partial trace operation reduces the size of the original density matrix, which will be a 2n x 2n matrix, where n is the number of qubits.
 
Couchyam said:
The complete density matrix would have no repeated indices, or would include a sum over both ##V## indices as well as ##V^*## indices:
$$
\hat\rho_0 = \rho_{a,i,j; b,k,\ell} |a,i,j\rangle\langle b, k, \ell| \equiv \sum_{a,i,j,b,k,\ell} \rho_{a,i,j; b,k,\ell} |a, i, j\rangle\langle b, k, \ell|
$$
where ##\rho_{a,i,j; b,k,\ell} = \rho^*_{b,k,\ell; a,i,j}##.
So how what would the matrix of say, ##\rho_0=\frac{1}{2^{2n}}\sum_{i,j}|0,i,j\rangle\langle0,i,j|## look like? I'm not sure what basis states to pick to represent this as a 2x2 matrix because of the presence of the ##\ket{i,j}## terms.
 
thatboi said:
So how what would the matrix of say, ##\rho_0=\frac{1}{2^{2n}}\sum_{i,j}|0,i,j\rangle\langle0,i,j|## look like? I'm not sure what basis states to pick to represent this as a 2x2 matrix
It's not a 2x2 matrix because it's not representing just one qubit. It's representing all the qubits. So it's a 2n x 2n matrix.

For the first qubit, you would use the ##\ket{0}##, ##\ket{1}## basis. For the other qubits, it doesn't matter what basis you pick; as I'm reading the stack exchange thread, ##i## and ##j## represent any pair of basis states you like for the other qubits.
 
PeterDonis said:
It's not a 2x2 matrix because it's not representing just one qubit. It's representing all the qubits. So it's a 2n x 2n matrix.

For the first qubit, you would use the ##\ket{0}##, ##\ket{1}## basis. For the other qubits, it doesn't matter what basis you pick; as I'm reading the stack exchange thread, ##i## and ##j## represent any pair of basis states you like for the other qubits.
Sorry, I think I am misunderstanding something: isn't ##\rho_{0}## an example of a term that would appear in the expression of ##\rho_{3}##? But it was claimed that ##\rho_{3}## was a 2x2 matrix.
 
thatboi said:
isn't ##\rho_{0}## an example of a term that would appear in the expression of ##\rho_{3}##?
No. ##\rho_0## is the initial state. ##\rho_3##, at least as that term was used in post #2, is the partial trace of the final state over all of the qubits except the first. (In the stack exchange thread, ##\rho_3## is just the final state itself, without the partial trace operation; but the rest of that answer basically describes the partial trace operation, since that's what you do to compute the probability of measuring the first qubit to be in state ##\ket{0}##.)

You appear to be confused by the fact that the expression ##\ket{0, i, j} \bra{0, i, j}## appears in both the formula for ##\rho_0## and the discussion of the partial trace operation. That is true, but it doesn't imply what you stated in the quote above. If we want to be really pedantic about how to compute the probability of measuring the first qubit to be in state ##\ket{0}##, we would say that you take the final state that results from the gate operations described, which is a 2n x 2n density matrix, take its partial trace over all the qubits except the first, which gives a 2 x 2 matrix that was called ##\rho_3## in post #2, and then compute the probability for ##\ket{0}## based on that 2 x 2 matrix, which is a straightforward operation. The stack exchange answer, when it talks about the expression ##\ket{0, i, j} \bra{0, i, j}## at the end, is basically combining the last two steps I just described (taking the partial trace and computing the probability of ##\ket{0}##).
 

Similar threads

Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K