Hi, I am wanting to confirm my understanding of the density matrix in quantum mechanics. Is it the wave function co-efficients squared - in other words the wave amplitudes squared which in turn are the probabilities and then these turn out to be placed into a matrix form with the squared wave...
I am studying Quantum Cryptography and I am quite new in Quantum area. I have read an article and I found this confusing statement:
My questions:
1. The three stage protocol implementing multiphoton. What is the meaning of coherent states of mean photon number?
2. How to describe the quantum...
Homework Statement
A beam of neutrons (moving along the z-direction) consists of an incoherent superposition of two beams that were initially all polarized along the x- and y-direction, respectively.
Using the Pauli spin matrices:
\sigma_x = \begin{pmatrix}
0 & 1 \\
1 & 0 \\...
I am reading Leonard Susskind's Theoretical Minimum book on Quantum Mechanics. Excercise 7.4 is as follows:
Calculate the density matrix for ##|\Psi\rangle = \alpha|u\rangle + \beta|d\rangle##.
Answer:
$$ \psi(u) = \alpha, \quad \psi^*(u) = \alpha^* \\
\psi(d) = \beta, \quad \psi^*(d) =...
Hi. I'm trying to prove that
[\Omega] = \int dq \int dp \, \rho_{w}(q,p)\,\Omega_{w}(q,p)
where
\rho_{w}(q,p) = \frac{1}{2\pi\hbar} \int dy \, \langle q-\frac{y}{2}|\rho|q+\frac{y}{2}\rangle\,\exp(i\frac{py}{\hbar})
is the Wigner function, being \rho a density matrix. On the other hand...
Homework Statement
Consider a system formed by particles (1) and (2) of same mass which do not interact among themselves and that are placed in a potential of infinite well type with width a. Let H(1) and H(2) be the individual hamiltonians and denote |\varphi_n(1)\rangle and...
I'm trying to solve a problem where I am given a few matrices and asked to determine if they could be density matrices or not and if they are if they represent pure or mixed ensembles. In the case of mixed ensembles, I should find a decomposition in terms of a sum of pure ensembles. The matrix...
Homework Statement
Write the density operator
$$\rho=\frac{1}{3}|u><u|+\frac{2}{3}|v><v|+\frac{\sqrt{2}}{3}(|u><v|+|v><u|, \quad where <u|v>=0$$
In matrix form
Homework Equations
$$\rho=\sum_i p_i |\psi><\psi|$$
The Attempt at a Solution
[/B]
The two first factors ##\frac{1}{3}|u><u|##...
If I have a Hamiltonian diagonal by blocks (H1 0; 0 H2), where H1 and H2 are square matrices, is the density matrix also diagonal by blocks in the same way?
I've worked through a Stern Gerlach experiment for the Sx and Sz directions using the density matrix formalism to account for the environment. This shows a result which I think is correct but relies on decoherence to give the "actual" value. I'm not confident about the result though. Would...
It says in Susskind's TM:
##\langle L \rangle = Tr \; \rho L = \sum_{a,a'}L_{a',a} \rho_{a,a'}##
with ##a## the index of a basisvector, ##L## an observable and ##\rho## a density matrix. Is this correct? What about the trace in the third part of this equation?
I got (very) confused about the concept of states, pure states and mixed states.
Is it correct that a linear combination of pure states is another pure state?
Can pure (and mixed) states only be expressed in density matrices?
Is a pure state expressed in a single density matrix, whereas mixed...
For a state |\Psi(t)\rangle = \sum_{k}c_k e^{-iE_kt/\hbar}|E_k\rangle , the density matrix elements in the energy basis are
\rho_{ab}(t) = c_a c^*_be^{-it(E_a -E_b)/\hbar}
How is it that in the long time limit, this reduces to \rho_{ab}(t) \approx |c_a|^2 \delta_{ab} ?
Is there some...
Hi everyone!
I am trying to create the density matrix for a spin-1/2 particle that is in thermal equilibrium at temperature T, and in a constant magnetic field oriented in the x-direction. This is a fairly straightforward process, but I'm getting stuck on one little part.
Before starting I...
Ref: R.K Pathria Statistical mechanics (third edition sec 5.2A)
First it is argued that the density matrix for microcanonical will be diagonal with all diagonal elements equal in the energy representation. Then it is said that this general form should remain the same in all representations. i.e...
Homework Statement
We have a quantum rotor in two dimensions with a Hamiltonian given by \hat{H}=-\dfrac{\hbar^2}{2I}\dfrac{d^2}{d\theta^2} . Write an expression for the density matrix \rho_ {\theta' \theta}=\langle \theta' | \hat{\rho} | \theta \rangle
Homework Equations...