How long does it take for a rocket to lift off the ground?

Click For Summary
SUMMARY

The discussion centers on calculating the time it takes for a rocket to lift off the ground, given its initial mass of 60,000 kg, a fuel burn rate of 300 kg/s, and an exhaust velocity of 2220 m/s. The key equation derived from Newton's second law is ΔV = u ln(mi/mf) - gΔt, where thrust must exceed gravitational force for liftoff. The participants emphasize that the thrust must be greater than the weight of the rocket for it to ascend, and they explore the implications of varying the rocket's initial weight relative to its thrust.

PREREQUISITES
  • Understanding of Newton's second law of motion
  • Familiarity with rocket propulsion principles
  • Knowledge of thrust-to-weight ratio calculations
  • Basic integration techniques in physics
NEXT STEPS
  • Study rocket propulsion dynamics and thrust calculations
  • Learn about thrust-to-weight ratio and its significance in rocket launches
  • Explore advanced integration techniques for motion equations
  • Investigate the effects of varying fuel burn rates on liftoff timing
USEFUL FOR

Aerospace engineers, physics students, and anyone interested in rocket science and propulsion mechanics will benefit from this discussion.

Tj Nelson
Messages
4
Reaction score
0

Homework Statement


A rocket with an initial mass of 60,000kg ignites its engines and burns fuel at a rate of 300 kg/s with an exhaust velocity of 2220 m/s. How long after the engines start does the rocket lift off the ground?

Homework Equations


From Newton's second law
F = Ma this equation can be derived
M(dv/dt) = Fext + u(dm/dt)

The Attempt at a Solution


I think the solution is fairly simple. What I did is divide by m, Fext = mg, and integrated it to get
ΔV = uln(mi/mf) - gΔt. But we don't know what the velocity of the rocket...
 
Physics news on Phys.org
There is no need to integrate the equation to find change in velocity. You are only interested in when the rocket lifts off the ground.

What is the condition on the amount of thrust in order for the rocket to start moving upward?
 
The thrust has to be greater than the force of gravity acting on it for the rocket to get off the ground, which is true in this case.
 
Right.
 
Ok so the forces are opposing each other at liftoff so ΣFy = Ft- mg =ma . But it does not make sense to me how you can get the time it takes to liftoff from that.
 
If the thrust force is greater than the weight of the rocket when the engines are first turned on, then how long do you have to wait before the rocket lifts off?

(This would have been a more interesting problem if the initial weight of the rocket were less than the thrust.)
 
Okay. If the weight of the rocket were less than the thrust, then I assume we would not be able to lift it off.
 
Tj Nelson said:
Okay. If the weight of the rocket were less than the thrust, then I assume we would not be able to lift it off.
Not at first. But if you wait ...
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
Replies
13
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K