- #1

- 82

- 4

Did I get those right? And is there a standard nomenclature? For convenience I was defining terms like

ubiquitous point--a point in every set of the topology

extra point--a point that only appears in X and no other set of the topology

dependent point--a point a depends on point b if a in O implies b is in O.

minimal neighborhood--the intersection of all open sets containing a given point (I was trying to find a way to determine an entire topology by giving a "basis" of sorts.)

Since I am only considering small finite sets, I merge mutually dependent points into "set points" (equivalence classes of points are the new points, if you will) and therefore I can make any topology into a T-zero topology, and a function from the set-points to N can preserve the information of how many points were merged.

Describing the structures, I know about discrete and indiscrete topologies, so I would refer to a 2D (discrete subtopology with two elements), a four-nested structure, and so forth. 2D,E in my notation means a topology T contains {0, a, b, ab, abc} (a discrete topology with an extra point added.)

I've proved some theorems, but I'm much better at reinventing the wheel than reading about wheels. I can't find anything on this topic under the names I guessed for it. Could someone please let me know where to find information on this? For all I know it's a computer science thing, or abstract algebra. Thanks in advance.