Just for fun, I tried enumerating the topologies on n points, for small n. I found that if the space X consists of 1 point, there is only one topology, and for n = 2, there are four topologies, although two are "isomorphic" in some sense. For n = 3, I I found 26 topologies, of 7 types. For n = 4, I found 241 topologies of 21 types.(adsbygoogle = window.adsbygoogle || []).push({});

Did I get those right? And is there a standard nomenclature? For convenience I was defining terms like

ubiquitous point--a point in every set of the topology

extra point--a point that only appears in X and no other set of the topology

dependent point--a point a depends on point b if a in O implies b is in O.

minimal neighborhood--the intersection of all open sets containing a given point (I was trying to find a way to determine an entire topology by giving a "basis" of sorts.)

Since I am only considering small finite sets, I merge mutually dependent points into "set points" (equivalence classes of points are the new points, if you will) and therefore I can make any topology into a T-zero topology, and a function from the set-points to N can preserve the information of how many points were merged.

Describing the structures, I know about discrete and indiscrete topologies, so I would refer to a 2D (discrete subtopology with two elements), a four-nested structure, and so forth. 2D,E in my notation means a topology T contains {0, a, b, ab, abc} (a discrete topology with an extra point added.)

I've proved some theorems, but I'm much better at reinventing the wheel than reading about wheels. I can't find anything on this topic under the names I guessed for it. Could someone please let me know where to find information on this? For all I know it's a computer science thing, or abstract algebra. Thanks in advance.

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# How many topologies exist on 4 points? Any nomenclature?

Loading...

Similar Threads - many topologies exist | Date |
---|---|

I Topology axioms | Today at 4:11 PM |

I Turning the square into a circle | Feb 16, 2018 |

How many trees in a graph? | Aug 10, 2015 |

Interpolation of Infinitely Many Points | Mar 12, 2013 |

Lebesgue outer measure of a set of countably many points is 0 - logic check | Oct 18, 2012 |

**Physics Forums - The Fusion of Science and Community**