MHB How Many Ways to Form a Six-Digit Odd Number Less Than 600,000?

  • Thread starter Thread starter Punch
  • Start date Start date
  • Tags Tags
    Form
Punch
Messages
44
Reaction score
0
A six-digit number is to be formed from the digits 1, 2 ,3, 4, 5, 6, 7, 8, 9. Find how many ways the six-digit number can be formed if the number must be odd and is less than 600,000 and no digit may appear more
 
Physics news on Phys.org
Punch said:
A six-digit number is to be formed from the digits 1, 2 ,3, 4, 5, 6, 7, 8, 9. Find how many ways the six-digit number can be formed if the number must be odd and is less than 600,000 and no digit may appear more than once

The side conditions mean that the leading digit must be one of 1,2,3,4,5, and the last digit 1,3,5,6,9.

Decompose into two groups, those with an odd leading digit and those with an even leading digit.

CB
 
Last edited:
its a six digit number
1st digit can be 1,2,3,4,5
2nd digit can be 0-9
3rd digit can be 0-9
4th digit can be 0-9
5th digit can be 0-9
6th digit can be 1,3,5,7,9

total ways = 5(10)(10)(10)(10)(5)
 
grgrsanjay said:
its a six digit number
1st digit can be 1,2,3,4,5
2nd digit can be 0-9
3rd digit can be 0-9
4th digit can be 0-9
5th digit can be 0-9
6th digit can be 1,3,5,7,9

total ways = 5(10)(10)(10)(10)(5)

No, as you choose the digits the number of options for the subsequent digits goes down.

CB
 
Hello, Punch!

A six-digit number is to be formed from the digits 1, 2 ,3, 4, 5, 6, 7, 8, 9.
Find how many ways the six-digit number can be formed if the number must be odd
and is less than 600,000 and no digit may appear more than once.
The number is odd; the last digit must be 1, 3, 5, 7 or 9.
The number is less than 600,00; the first digit must 1, 2, 3, 4 or 5.There are two cases to consider.

(1) The last digit is 1, 3 or 5: .$3$ choices.
. . .The first digit has only $4$ choices.
. . .There are $\text{P}(7,4)$ ways to arrange the other four digits.
There are: .$ 3\cdot4\cdot\text{P}(7,4) \,=\,10,080 $ ways.

(2) The last digit is 7 or 9: .$2$ choices.
. . .The first digit has all $5$ choices.
. . .There are $\text{P}(7,4)$ ways to arrange the other four digits.
There are: .$ 2\cdot5\cdot\text{P}(7,4) \,=\,8,400 $ ways.

Therefore, there are: .$10,080 + 8,400 \:=\:18,480 $ ways.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top