MHB How many words can be formed from the word SUCCESS without any repeated letters?

  • Thread starter Thread starter juantheron
  • Start date Start date
juantheron
Messages
243
Reaction score
1
how many number of words are formed from word $\bf{SUCCESS}$ such that no two $\bf{C}$ and no two $\bf{S}$ are together

My Trial:: First we will count Total no. of arrangement of words without restriction.

which is $\displaystyle = \frac{7!}{3!\times 2!} = 420$

Now Total no. of arrangement in which two $\bf{C}$ are together

which is $\displaystyle = \frac{6!}{3!} = 120$

Now Total no. of words in which no two $\bf{S}$ are togrther, is $\displaystyle = \binom{5}{3}\times \frac{4!}{2!} = 120$

Now I did understand How can i Calculate after that

So Help please

Thanks
 
Physics news on Phys.org
jacks said:
Now Total no. of words in which no two $\bf{S}$ are togrther, is $\displaystyle = \binom{5}{3}\times \frac{4!}{2!} = 120$
Subtract from that the number of words where no two S's are together, but both C's are together.
 
Thanks Evgeny.Makarov, Using your Hint:

Total no. of words in which two $\bf{S}$ are not together and two $\bf{C}$ are together

$ \displaystyle = \binom{4}{3}\times 3! = 24$

Now Total no. of words in which no two $\bf{C}$ and no two $\bf{S}$ are together , is $ = 120-24 = 96$

Got it.

Thanks
 
Last edited:
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top