How Much Should Mattos Oil Deposit Semiannually to Pay Off Their Debt?

  • Context: MHB 
  • Thread starter Thread starter needOfHelpCMath
  • Start date Start date
  • Tags Tags
    Annuity Future Value
Click For Summary

Discussion Overview

The discussion revolves around calculating the semiannual payment required for Mattos Oil Refining Company to pay off a $50,000 debt in 6 years, given a 9.6% interest rate compounded semiannually. Participants explore different formulas and approaches to determine the correct periodic deposit needed for this financial scenario.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Homework-related

Main Points Raised

  • Some participants express uncertainty about the formula for calculating the periodic deposit for an annuity or sinking fund, specifically questioning the formula R = S[(r/m)/((1+r/m)^(mt)-1)] and whether it is appropriate for their situation.
  • One participant proposes a detailed breakdown of the accumulation process, introducing variables for the semiannual interest rate and the payment structure, while deriving a general formula for future value based on periodic deposits.
  • Another participant suggests an alternative formula for calculating the payment per period, using the future value, interest rate per period, and number of periods, but does not provide a definitive conclusion on the correct approach.
  • Participants note the need for clarity regarding the initial investment amount and the assumptions made about the interest rate being annual, which affects the calculations.

Areas of Agreement / Disagreement

There is no consensus on the correct formula or approach to use for calculating the semiannual payment. Multiple competing views and methods are presented, and the discussion remains unresolved.

Contextual Notes

Participants highlight ambiguities in the information provided, such as the initial investment amount and the interpretation of the interest rate, which may affect the calculations. There are also unresolved mathematical steps in deriving the final payment amount.

needOfHelpCMath
Messages
70
Reaction score
0
In 6 years, Mattos Oil Refining Company wants to pay off a $50,000 debt in one lump sum amount. They must set up an account to accumulate the necessary funds to pay off their debt. If the payments are made every 6 months and the fund earns 9.6% compounded semiannually, what is the amount of each semiannual payment?

I have used this formula cannot get the answer? what is problem? Is this the correct formula

Periodic Deposit for Annuity or Sinking Fund
R = S[(r/m)/((1+r/m)^(mt)-1)]
 
Physics news on Phys.org
needOfHelpCMath said:
In 6 years, Mattos Oil Refining Company wants to pay off a $50,000 debt in one lump sum amount. They must set up an account to accumulate the necessary funds to pay off their debt. If the payments are made every 6 months and the fund earns 9.6% compounded semiannually, what is the amount of each semiannual payment?

I have used this formula cannot get the answer? what is problem? Is this the correct formula

Periodic Deposit for Annuity or Sinking Fund
R = S[(r/m)/((1+r/m)^(mt)-1)]

Well, let's see if we can come up with a formula... It compounds semi-annually, so let's call the semi-annual interest rate $\displaystyle \begin{align*} R \end{align*}$. Each half year a payment of $\displaystyle \begin{align*} D \end{align*}$ is added. Thus...

$\displaystyle \begin{align*} V_1 &= V_0 \left( 1 + R \right) + D \\ \\ V_2 &= V_1 \left( 1 + R \right) + D \\ &= \left[ V_0 \left( 1 + R \right) + D \right] \left( 1 + R \right) + D \\ &= V_0 \left( 1 + R \right) ^2 + \left[ D \left( 1 + R \right) + D \right] \\ \\ V_3 &= V_2 \left( 1 + R \right) + D \\ &= \left[ V_0 \left( 1 + R \right) ^2 + D \left( 1 + R \right) + D \right] \left( 1 + R \right) + D \\ &= V_0 \left( 1 + R \right) ^3 + \left[ D \left( 1 + R \right) ^2 + D \left( 1 + R \right) + D \right] \\ \\ V_4 &= V_3 \left( 1 + R \right) + D \\ &= \left[ V_0 \left( 1 + R \right) ^3 + D \left( 1 + R \right) ^2 + D \left( 1 + R \right) + D \right] \left( 1 + R \right) + D \\ &= V_0 \left( 1 + R \right) ^4 + \left[ D \left( 1 + R \right) ^3 + D \left( 1 + R \right) ^2 + D \left( 1 + R \right) + D \right] \end{align*}$

So the pattern appears to be...

$\displaystyle \begin{align*} V_n &= V_0 \left( 1 + R \right) ^n + \left[ D \left( 1 + R \right) ^{n - 1} + D \left( 1 + R \right) ^{n - 2} + D \left( 1 + R \right) ^{n - 3} + \dots + D \left( 1 + R \right) ^2 + D \left( 1 + R \right) + D \right] \end{align*}$

and since the terms involving D form a geometric series $\displaystyle \begin{align*} S_n = a + a\,r + a\,r^2 + a\,r^3 + \dots + a\,r^{n - 1} \end{align*}$, it can be written in a closed form as $\displaystyle \begin{align*} \frac{a \left( r^n - 1 \right) }{r - 1} \end{align*}$ giving

$\displaystyle \begin{align*} V_n &= V_0 \left( 1 + R \right) ^n + \frac{ D \left[ \left( 1 + R \right) ^n - 1 \right] }{ \left( 1 + R \right) - 1 } \\ V_n &= V_0 \left( 1 + R \right) ^n + \frac{D \left[ \left( 1 + R \right) ^{n} - 1 \right] }{R} \end{align*}$Now in your case, you haven't listed all the necessary information, and what you have posted is ambiguous. I am ASSUMING that the 9.6% interest rate is the interest rate per annum, so that means that your half yearly interest rate is $\displaystyle \begin{align*} R = 4.8\% = 0.048 \end{align*}$. You haven't said what your initial investment $\displaystyle \begin{align*} V_0 \end{align*}$ is. You need to make 12 payments (one every half year for 6 years) so $\displaystyle \begin{align*} n = 12 \end{align*}$ and you need to amount to $\displaystyle \begin{align*} V_{12} = 50\,000 \end{align*}$. So with the $\displaystyle \begin{align*} V_0 \end{align*}$ value you should have, you substitute all these values in and then solve for $\displaystyle \begin{align*} D \end{align*}$.
 
needOfHelpCMath said:
In 6 years, Mattos Oil Refining Company wants to pay off a $50,000 debt in one lump sum amount. They must set up an account to accumulate the necessary funds to pay off their debt. If the payments are made every 6 months and the fund earns 9.6% compounded semiannually, what is the amount of each semiannual payment?
QUOTE]
F = future value (50000)
i = interest rate per period (.096/2=.048)
n = number of periods (12)
P = payment per period (?)

P = F*i / (1 + i)^n
 
thank you so much! Appreciate the help
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
7K