MHB How Much Should Mattos Oil Deposit Semiannually to Pay Off Their Debt?

AI Thread Summary
Mattos Oil Refining Company needs to pay off a $50,000 debt in six years, requiring semiannual payments into an account that earns 9.6% interest compounded semiannually. The formula for calculating the periodic deposit for an annuity or sinking fund is discussed, but there are ambiguities regarding the initial investment and the correct application of the formula. The semiannual interest rate is established as 4.8%, and the total number of payments is 12. To find the amount of each payment, the future value, interest rate, and number of periods must be correctly substituted into the formula. Accurate calculations will determine the necessary semiannual payment to meet the debt obligation.
needOfHelpCMath
Messages
70
Reaction score
0
In 6 years, Mattos Oil Refining Company wants to pay off a $50,000 debt in one lump sum amount. They must set up an account to accumulate the necessary funds to pay off their debt. If the payments are made every 6 months and the fund earns 9.6% compounded semiannually, what is the amount of each semiannual payment?

I have used this formula cannot get the answer? what is problem? Is this the correct formula

Periodic Deposit for Annuity or Sinking Fund
R = S[(r/m)/((1+r/m)^(mt)-1)]
 
Mathematics news on Phys.org
needOfHelpCMath said:
In 6 years, Mattos Oil Refining Company wants to pay off a $50,000 debt in one lump sum amount. They must set up an account to accumulate the necessary funds to pay off their debt. If the payments are made every 6 months and the fund earns 9.6% compounded semiannually, what is the amount of each semiannual payment?

I have used this formula cannot get the answer? what is problem? Is this the correct formula

Periodic Deposit for Annuity or Sinking Fund
R = S[(r/m)/((1+r/m)^(mt)-1)]

Well, let's see if we can come up with a formula... It compounds semi-annually, so let's call the semi-annual interest rate $\displaystyle \begin{align*} R \end{align*}$. Each half year a payment of $\displaystyle \begin{align*} D \end{align*}$ is added. Thus...

$\displaystyle \begin{align*} V_1 &= V_0 \left( 1 + R \right) + D \\ \\ V_2 &= V_1 \left( 1 + R \right) + D \\ &= \left[ V_0 \left( 1 + R \right) + D \right] \left( 1 + R \right) + D \\ &= V_0 \left( 1 + R \right) ^2 + \left[ D \left( 1 + R \right) + D \right] \\ \\ V_3 &= V_2 \left( 1 + R \right) + D \\ &= \left[ V_0 \left( 1 + R \right) ^2 + D \left( 1 + R \right) + D \right] \left( 1 + R \right) + D \\ &= V_0 \left( 1 + R \right) ^3 + \left[ D \left( 1 + R \right) ^2 + D \left( 1 + R \right) + D \right] \\ \\ V_4 &= V_3 \left( 1 + R \right) + D \\ &= \left[ V_0 \left( 1 + R \right) ^3 + D \left( 1 + R \right) ^2 + D \left( 1 + R \right) + D \right] \left( 1 + R \right) + D \\ &= V_0 \left( 1 + R \right) ^4 + \left[ D \left( 1 + R \right) ^3 + D \left( 1 + R \right) ^2 + D \left( 1 + R \right) + D \right] \end{align*}$

So the pattern appears to be...

$\displaystyle \begin{align*} V_n &= V_0 \left( 1 + R \right) ^n + \left[ D \left( 1 + R \right) ^{n - 1} + D \left( 1 + R \right) ^{n - 2} + D \left( 1 + R \right) ^{n - 3} + \dots + D \left( 1 + R \right) ^2 + D \left( 1 + R \right) + D \right] \end{align*}$

and since the terms involving D form a geometric series $\displaystyle \begin{align*} S_n = a + a\,r + a\,r^2 + a\,r^3 + \dots + a\,r^{n - 1} \end{align*}$, it can be written in a closed form as $\displaystyle \begin{align*} \frac{a \left( r^n - 1 \right) }{r - 1} \end{align*}$ giving

$\displaystyle \begin{align*} V_n &= V_0 \left( 1 + R \right) ^n + \frac{ D \left[ \left( 1 + R \right) ^n - 1 \right] }{ \left( 1 + R \right) - 1 } \\ V_n &= V_0 \left( 1 + R \right) ^n + \frac{D \left[ \left( 1 + R \right) ^{n} - 1 \right] }{R} \end{align*}$Now in your case, you haven't listed all the necessary information, and what you have posted is ambiguous. I am ASSUMING that the 9.6% interest rate is the interest rate per annum, so that means that your half yearly interest rate is $\displaystyle \begin{align*} R = 4.8\% = 0.048 \end{align*}$. You haven't said what your initial investment $\displaystyle \begin{align*} V_0 \end{align*}$ is. You need to make 12 payments (one every half year for 6 years) so $\displaystyle \begin{align*} n = 12 \end{align*}$ and you need to amount to $\displaystyle \begin{align*} V_{12} = 50\,000 \end{align*}$. So with the $\displaystyle \begin{align*} V_0 \end{align*}$ value you should have, you substitute all these values in and then solve for $\displaystyle \begin{align*} D \end{align*}$.
 
needOfHelpCMath said:
In 6 years, Mattos Oil Refining Company wants to pay off a $50,000 debt in one lump sum amount. They must set up an account to accumulate the necessary funds to pay off their debt. If the payments are made every 6 months and the fund earns 9.6% compounded semiannually, what is the amount of each semiannual payment?
QUOTE]
F = future value (50000)
i = interest rate per period (.096/2=.048)
n = number of periods (12)
P = payment per period (?)

P = F*i / (1 + i)^n
 
thank you so much! Appreciate the help
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top