How should I calculate the stationary value of ## S[y] ##?

Math100
Messages
813
Reaction score
229
Homework Statement
Use the method of Lagrange multipliers to find the function ## y(x) ## that makes the functional ## S[y]=\int_{1}^{2}x^2y^2dx ## stationary subject to the two constraints ## \int_{1}^{2}xydx=1 ## and ## \int_{1}^{2}x^2ydx=2 ##. Calculate the stationary value of ## S[y] ##.
Relevant Equations
None.
Consider the functional ## S[y]=\int_{1}^{2}x^2y^2dx ## stationary subject to the two constraints ## \int_{1}^{2}xydx=1 ## and ## \int_{1}^{2}x^2ydx=2 ##.
Then the auxiliary functional is ## \overline{S}[y]=\int_{1}^{2}(x^2y^2+\lambda_{1}xy+\lambda_{2}x^2y)dx, y(1)=y(2)=0 ## where ## \lambda_{1} ## and ## \lambda_{2} ## are the Lagrange multipliers.
By definition, the Euler-Lagrange equation is ## \frac{d}{dx}(\frac{\partial F}{\partial y'})-\frac{\partial F}{\partial y}=0, y(a)=A, y(b)=B ## for the functional ## S[y]=\int_{a}^{b}F(x, y, y')dx, y(a)=A, y(b)=B ##.
Let ## F(x, y, y')=x^2y^2+\lambda_{1}xy+\lambda_{2}x^2y ##.
This gives ## \frac{\partial F}{\partial y}=2x^2y+\lambda_{1}x+\lambda_{2}x^2 ##.
Thus, the Euler-Lagrange equation is ## 2x^2y+\lambda_{1}x+\lambda_{2}x^2=0\implies 2x^2y=-\lambda_{1}x-\lambda_{2}x^2\implies y=-\frac{\lambda_{1}}{2x}-\frac{\lambda_{2}}{2} ##.
The first constraint ## \int_{1}^{2}xydx=1 ## gives ## 1=\int_{1}^{2}x[-\frac{\lambda_{1}}{2x}-\frac{\lambda_{2}}{2}]dx\implies 1=-\frac{\lambda_{1}}{2}-\frac{3\lambda_{2}}{4} ## and the second constraint ## \int_{1}^{2}x^2ydx=2 ## gives ## 2=\int_{1}^{2}x^2[-\frac{\lambda_{1}}{2x}-\frac{\lambda_{2}}{2}]dx\implies 2=-\frac{3\lambda_{1}}{4}-\frac{7\lambda_{2}}{6} ##, so ## \lambda_{1}=16 ## and ## \lambda_{2}=-12 ##.
Hence ## y(x)=-\frac{\lambda_{1}}{2x}-\frac{\lambda_{2}}{2}\implies y(x)=-\frac{8}{x}+6 ##.
Observe that ## S[y]=\int_{1}^{2}x^2y^2dx\implies S[y]=\int_{1}^{2}x^2(-\frac{8}{x}+6)^2dx\implies S[y]=\int_{1}^{2}x^2(\frac{64}{x^2}-\frac{96}{x}+36)dx\implies S[y]=4 ##.
Therefore, the function ## y(x) ## that makes the functional ## S[y]=\int_{1}^{2}x^2y^2dx ## stationary subject to the two constraints ## \int_{1}^{2}xydx=1 ## and ## \int_{1}^{2}x^2ydx=2 ## is ## y(x)=-\frac{8}{x}+6 ## and the stationary value of ## S[y] ## is ## 4 ##.

I just want to know if the work and answer shown above is correct or not. Please check/verify/confirm to see if this is correct or not.
 
Last edited:
Physics news on Phys.org
This is the correct method; I hve not checked your arithmetic.

Note that y' does not appear in F, so you do not end up with an ODE and you do not have boundary conditions.
 
pasmith said:
This is the correct method; I hve not checked your arithmetic.

Note that y' does not appear in F, so you do not end up with an ODE and you do not have boundary conditions.
Thank you so much for confirming/verifying!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top