How should I find the nontrivial stationary paths?

  • Thread starter Math100
  • Start date
In summary, to find nontrivial stationary paths, one should analyze the system's equations of motion and look for critical points by setting the derivatives to zero. Utilizing techniques such as the calculus of variations can help identify paths that minimize or maximize a given functional. Additionally, exploring symmetries and conserved quantities may reveal insights into the structure of the stationary paths, while numerical methods can assist in visualizing and approximating solutions when analytical methods prove challenging.
  • #1
Math100
807
227
Homework Statement
Consider the functional ## S[y]=\alpha y(1)^2+\int_{0}^{1}\beta y'^2dx, y(0)=0 ##, with a natural boundary condition at ## x=1 ## and subject to the constraint ## C[y]=\gamma y(1)^2+\int_{0}^{1}w(x)y^2dx=1 ##, where ## \alpha, \beta ## and ## \gamma ## are nonzero constants.
a) Show that the stationary paths of this system satisfy the Euler-Lagrange equation ## \beta\frac{d^2y}{dx^2}+\lambda w(x)y=0, y(0)=0, (\alpha-\gamma\lambda)y(1)+\beta y'(1)=0 ##, where ## \lambda ## is a Lagrange multiplier.
b) Let ## w(x)=1 ## and ## \alpha=\beta=\gamma=1 ##. Find the nontrivial stationary paths, stating clearly the eigenfunctions ## y ## (normalized so that ## C[y]=1 ##) and the values of the associated Lagrange multiplier.
Relevant Equations
None.
a) Proof:
Let ## \lambda ## be the Lagrange multiplier.
Then the auxiliary functional is ## \overline{S}[y]=\alpha y(1)^2+\int_{0}^{1}\beta y'^2dx-\lambda (\gamma y(1)^2+\int_{0}^{1}w(x)y^2dx-1) ##.
This gives ## \overline{S}[y+\epsilon h]=\alpha (y(1)+\epsilon h(1))^2+\int_{0}^{1}\beta (y'+\epsilon h')^2dx-\lambda (\gamma(y(1)+\epsilon h(1))^2+\int_{0}^{1}w(x)(y+\epsilon h)^2dx-1) ##, where ## y+\epsilon h ## is an admissible perturbation, so that ## h(0)=0 ##.
Note that the Gateaux differential ## \triangle\overline{S}[y, h] ## is given by ## \frac{d}{d\epsilon}\overline{S}[y+\epsilon h]\vert_{\epsilon=0} ##.
Thus ## \frac{d}{d\epsilon}\overline{S}[y+\epsilon h]\vert_{\epsilon=0}=2\alpha y(1)h(1)+2\int_{0}^{1}\beta y'h'dx-2\lambda (\gamma y(1)h(1)+\int_{0}^{1}wyhdx) ##.

From here, how should I show that the stationary paths of this system satisfy the given Euler-Lagrange equation?

b) Let ## w(x)=1 ## and ## \alpha=\beta=\gamma=1 ##.
Consider the Euler-Lagrange equation ## \beta\frac{d^2y}{dx^2}+\lambda w(x)y=0, y(0)=0, (\alpha-\gamma\lambda)y(1)+\beta y'(1)=0 ##, where ## \lambda ## is a Lagrange multiplier.
Then we have ## \frac{d^2y}{dx^2}+\lambda y=0, y(0)=0, (1-\lambda)y(1)+y'(1)=0 ##, where ## \lambda ## is a Lagrange multiplier.
This gives ## y=c_{1}sin(\sqrt{\lambda}x)+c_{2}cos(\sqrt{\lambda}x) ##.

From here, how should I find the nontrivial stationary paths?
 
Physics news on Phys.org
  • #2
Math100 said:
Homework Statement: Consider the functional ## S[y]=\alpha y(1)^2+\int_{0}^{1}\beta y'^2dx, y(0)=0 ##, with a natural boundary condition at ## x=1 ## and subject to the constraint ## C[y]=\gamma y(1)^2+\int_{0}^{1}w(x)y^2dx=1 ##, where ## \alpha, \beta ## and ## \gamma ## are nonzero constants.
a) Show that the stationary paths of this system satisfy the Euler-Lagrange equation ## \beta\frac{d^2y}{dx^2}+\lambda w(x)y=0, y(0)=0, (\alpha-\gamma\lambda)y(1)+\beta y'(1)=0 ##, where ## \lambda ## is a Lagrange multiplier.
b) Let ## w(x)=1 ## and ## \alpha=\beta=\gamma=1 ##. Find the nontrivial stationary paths, stating clearly the eigenfunctions ## y ## (normalized so that ## C[y]=1 ##) and the values of the associated Lagrange multiplier.
Relevant Equations: None.

a) Proof:
Let ## \lambda ## be the Lagrange multiplier.
Then the auxiliary functional is ## \overline{S}[y]=\alpha y(1)^2+\int_{0}^{1}\beta y'^2dx-\lambda (\gamma y(1)^2+\int_{0}^{1}w(x)y^2dx-1) ##.
This gives ## \overline{S}[y+\epsilon h]=\alpha (y(1)+\epsilon h(1))^2+\int_{0}^{1}\beta (y'+\epsilon h')^2dx-\lambda (\gamma(y(1)+\epsilon h(1))^2+\int_{0}^{1}w(x)(y+\epsilon h)^2dx-1) ##, where ## y+\epsilon h ## is an admissible perturbation, so that ## h(0)=0 ##.
Note that the Gateaux differential ## \triangle\overline{S}[y, h] ## is given by ## \frac{d}{d\epsilon}\overline{S}[y+\epsilon h]\vert_{\epsilon=0} ##.
Thus ## \frac{d}{d\epsilon}\overline{S}[y+\epsilon h]\vert_{\epsilon=0}=2\alpha y(1)h(1)+2\int_{0}^{1}\beta y'h'dx-2\lambda (\gamma y(1)h(1)+\int_{0}^{1}wyhdx) ##.

From here, how should I show that the stationary paths of this system satisfy the given Euler-Lagrange equation?

Assuming your work is correct, you have [tex]
(\alpha - \gamma\lambda)y(1)h(1) + \int_0^1 \beta y'h' - \lambda w y h \,dx = 0.[/tex] What is the next step in all of these problems? Integrate [itex]y'h'[/itex] by parts.

b) Let ## w(x)=1 ## and ## \alpha=\beta=\gamma=1 ##.
Consider the Euler-Lagrange equation ## \beta\frac{d^2y}{dx^2}+\lambda w(x)y=0, y(0)=0, (\alpha-\gamma\lambda)y(1)+\beta y'(1)=0 ##, where ## \lambda ## is a Lagrange multiplier.
Then we have ## \frac{d^2y}{dx^2}+\lambda y=0, y(0)=0, (1-\lambda)y(1)+y'(1)=0 ##, where ## \lambda ## is a Lagrange multiplier.
This gives ## y=c_{1}sin(\sqrt{\lambda}x)+c_{2}cos(\sqrt{\lambda}x) ##.

This assumes [itex]\lambda \neq 0[/itex]. What happens if [itex]\lambda = 0[/itex]? Do you get a non-zero solution for [itex]y[/itex]?

For [itex]\lambda = k^2 > 0[/itex], you know from the condition [itex]y(0) = 0[/itex] that [itex]c_2 = 0[/itex]. That leaves you with the condition at [itex]y(1)[/itex], which takes the form [tex]
c_1f(k) = 0.[/tex] We know that [itex]c_1 \neq 0[/itex], so that requires [itex]f(k) = 0[/itex]. The condition [itex]C[c_1\sin kx] = 1[/itex] then gives you [itex]c_1[/itex] in terms of [itex]k[/itex].
 
  • Like
Likes Math100
  • #3
pasmith said:
Assuming your work is correct, you have [tex]
(\alpha - \gamma\lambda)y(1)h(1) + \int_0^1 \beta y'h' - \lambda w y h \,dx = 0.[/tex] What is the next step in all of these problems? Integrate [itex]y'h'[/itex] by parts.



This assumes [itex]\lambda \neq 0[/itex]. What happens if [itex]\lambda = 0[/itex]? Do you get a non-zero solution for [itex]y[/itex]?

For [itex]\lambda = k^2 > 0[/itex], you know from the condition [itex]y(0) = 0[/itex] that [itex]c_2 = 0[/itex]. That leaves you with the condition at [itex]y(1)[/itex], which takes the form [tex]
c_1f(k) = 0.[/tex] We know that [itex]c_1 \neq 0[/itex], so that requires [itex]f(k) = 0[/itex]. The condition [itex]C[c_1\sin kx] = 1[/itex] then gives you [itex]c_1[/itex] in terms of [itex]k[/itex].
So for part b), I've got ## y=Asin(\sqrt{\lambda}x)+Bcos(\sqrt{\lambda}x) ##, where ## A, B ## are constants. The condition ## y(0)=0 ## gives ## B=0 ## and the boundary condition at ## x=1 ## gives ## y(1)=0\implies 0=Asin(\sqrt{\lambda})\implies sin(\sqrt{\lambda})=0 ## since ## A\neq 0 ##. This means ## \sqrt{\lambda}=n\pi\implies y=Asin(n\pi x) ##.
Thus, the constraint gives ## 1=\int_{0}^{1}[Asin(n\pi x)]^2dx\implies 1=A^2\int_{0}^{1}sin^2(n\pi x)dx\implies A=\sqrt{2} ##.
Hence, ## y=\sqrt{2}sin(\sqrt{\lambda x}) ##.
Is this the correct stationary path?
 
  • #4
Try again. The condition at [itex]x = 1[/itex] is [tex]
(1 - \lambda)y(1) + y'(1) = 0.[/tex]
 
  • #5
pasmith said:
Try again. The condition at [itex]x = 1[/itex] is [tex]
(1 - \lambda)y(1) + y'(1) = 0.[/tex]
I still don't get this one. How does ## (1-\lambda)y(1)+y'(1)=0 ## determine our another constant ## A ##?
 
  • #6
You are dealing with an eigenvalue problem. The condition at 1 tells you that either [itex]A = 0[/itex], which is the trivial solution, or else [itex]\lambda[/itex] must satisfy a certain condition. Then the constraint [itex]C[y] = 1[/itex] determines [itex]A[/itex].
 
Last edited:
  • #7
pasmith said:
You are dealing with an eigenvalue problem. The condition at 1 tells you that either [itex]A = 0[/itex], which is the trivial solution, or else [itex]\lambda[/itex] must satisfy a certain condition. Then the constraint [itex]C[y] = 1[/itex] determines [itex]A[/itex].
How can ## \lambda ## satisfy a certian condition? And how to find the constant ## A ##?
 
  • #8
pasmith said:
You are dealing with an eigenvalue problem. The condition at 1 tells you that either [itex]A = 0[/itex], which is the trivial solution, or else [itex]\lambda[/itex] must satisfy a certain condition. Then the constraint [itex]C[y] = 1[/itex] determines [itex]A[/itex].
Since the constant ## B=0 ##, we have ## y=Asin(\sqrt{\lambda}x) ## and using the boundary condition at ## x=1 ## gives ## (1-\lambda)y(1)+y'(1)=0\implies (1-\lambda)Asin(\sqrt{\lambda})+A\sqrt{\lambda}cos(\sqrt{\lambda})=0 ##. But then this means ## sin(\sqrt{\lambda})=0\implies \sqrt{\lambda}=n\pi ## for ## n\neq 0 ## and ## cos(\sqrt{\lambda})=0\implies \sqrt{\lambda}=(n+\frac{1}{2})\pi ## for some ## n\in\mathbb{Z} ##. What's wrong in here?
 
  • #9
Math100 said:
Since the constant ## B=0 ##, we have ## y=Asin(\sqrt{\lambda}x) ## and using the boundary condition at ## x=1 ## gives ## (1-\lambda)y(1)+y'(1)=0\implies (1-\lambda)Asin(\sqrt{\lambda})+A\sqrt{\lambda}cos(\sqrt{\lambda})=0 ##. But then this means ## sin(\sqrt{\lambda})=0\implies \sqrt{\lambda}=n\pi ## for ## n\neq 0 ## and ## cos(\sqrt{\lambda})=0\implies \sqrt{\lambda}=(n+\frac{1}{2})\pi ## for some ## n\in\mathbb{Z} ##. What's wrong in here?
What's wrong is your assumption that the ##\sin## and ##\cos## terms must vanish individually. Following the suggestion of @pasmith, set ##\lambda=k^2## and write your boundary (eigenvalue) condition as ##\left(1-k^{2}\right)\sin k+k\cos k=0##. Beyond the the trivial solution ##k=0##, a plot of the function on the left-side suggests that the condition has an infinity of roots, the first few of which are (using Mathematica): ##k_1=1.20779,k_2=3.44824,k_3=6.44095,k_4=9.53048,k_5=12.6458##. The squares of these are the first five allowed values of the Lagrange multiplier ##\lambda## in your variational problem part b). All that remains to do now is to plug your eigensolutions ##y_\lambda (x)## into ##C[y_\lambda]=1## and calculate the normalization factors ##A_\lambda##.
 
  • #10
renormalize said:
What's wrong is your assumption that the ##\sin## and ##\cos## terms must vanish individually. Following the suggestion of @pasmith, set ##\lambda=k^2## and write your boundary (eigenvalue) condition as ##\left(1-k^{2}\right)\sin k+k\cos k=0##. Beyond the the trivial solution ##k=0##, a plot of the function on the left-side suggests that the condition has an infinity of roots, the first few of which are (using Mathematica): ##k_1=1.20779,k_2=3.44824,k_3=6.44095,k_4=9.53048,k_5=12.6458##. The squares of these are the first five allowed values of the Lagrange multiplier ##\lambda## in your variational problem part b). All that remains to do now is to plug your eigensolutions ##y_\lambda (x)## into ##C[y_\lambda]=1## and calculate the normalization factors ##A_\lambda##.
I don't understand. If the condition has an infinity of roots, then how are we supposed to plug those ## k ## values into the eigensolutions ##y_\lambda (x)## into ##C[y_\lambda]=1## in order to find the constant ## A ##?
 
  • #11
Math100 said:
I don't understand. If the condition has an infinity of roots, then how are we supposed to plug those ## k ## values into the eigensolutions ##y_\lambda (x)## into ##C[y_\lambda]=1## in order to find the constant ## A ##?
It's exactly analogous to what you would do for the simple boundary/eigenvalue condition ##\sin k_n=0##. Of course, for that case you know that the infinity of roots are explicitly given by ##k_n=n\pi##, where ##n## is any natural number, and you use those values to express the normalization ##A_n## as a function of ##n\pi##. But what if you didn't know that explicit solution? You'd simply replace ##n\pi## in ##A_n## by ##k_n##, along with the statement than the allowed eigenvalues of ##k_n## are the roots of ##\sin k_n=0##. (And perhaps display one or more of the eigenvalues that you find numerically.) Just do the same thing for your variational problem.
 
Back
Top