Hi,(adsbygoogle = window.adsbygoogle || []).push({});

if we supposexandyare two elements of some vector spaceV(say ℝ^{n}), and if we consider a linear functionf:V→V', we know that the inner product of the transformed vectors is given by: [tex]\left\langle f\mathbf{x} , f\mathbf{y} \right\rangle = \left\langle \mathbf{x} , \overline{f}f\mathbf{y} \right\rangle = \left\langle \overline{f}f\mathbf{x} , \mathbf{y} \right\rangle[/tex] where [itex]\overline{f}[/itex] is the adjoint operator of [itex]f[/itex].

What can we say about [itex]\left\langle f\mathbf{x} , f\mathbf{y} \right\rangle[/itex] whenfis non-linear, for example adiffeomorphism?

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# How the inner product changes under non-linear transformation

Loading...

Similar Threads - inner product changes | Date |
---|---|

I Inner product, dot product? | Aug 24, 2017 |

I Non-negativity of the inner product | Apr 6, 2017 |

I Is Geometric Algebra inconsistent/circular? | Jul 8, 2016 |

**Physics Forums - The Fusion of Science and Community**