I How to apply potential operator ##V(\hat{x})##

Click For Summary
The discussion centers on clarifying the action of the potential operator ##V(\hat{x})## on position kets, specifically whether it is defined as ##\hat{V}(x)|x\rangle=V(x)|x\rangle##. It is confirmed that for any ket ##|\psi\rangle##, the expression ##V(\hat{x})|\psi\rangle## can be represented as an integral involving ##V(x)## and position kets. Additionally, the transformation of the operator on negative position kets is explored, leading to the expression ##V(\hat{x}) \int d x|-x\rangle\langle x \mid \psi\rangle## equating to ##\int d x V(-x)|-x\rangle\langle x \mid \psi\rangle##. The participants express uncertainty about the implications of this transformation but agree that the mathematical representations appear correct. Overall, the discussion effectively clarifies the operator's action on position states within quantum mechanics.
Kashmir
Messages
466
Reaction score
74
I want some clarification on the potential operator ##V(\hat{x})##. Can you please help me

------------------------------

Is the action of ##V(\hat{x})## defined by its action on the position kets as ##\hat{V}(x)|x\rangle=V(x)|x\rangle##?

Then we'd have for any ket ##|\psi\rangle## that ##V(\hat{x})|\psi\rangle## ##=V(\hat{x}) \int d x|x\rangle\langle x \mid \psi\rangle####=\int d x V(x)|x\rangle\langle x \mid \psi\rangle##

And ##V(\hat{x}) \int d x|-x\rangle\langle x \mid \psi\rangle## equals ##\int d x V(-x)|-x\rangle\langle x \mid \psi\rangle##
Is that correct?
 
Physics news on Phys.org
Kashmir said:
Is the action of ##V(\hat{x})## defined by its action on the position kets as ##\hat{V}(x)|x\rangle=V(x)|x\rangle##?

Then we'd have for any ket ##|\psi\rangle## that ##V(\hat{x})|\psi\rangle## ##=V(\hat{x}) \int d x|x\rangle\langle x \mid \psi\rangle####=\int d x V(x)|x\rangle\langle x \mid \psi\rangle##
This looks right.
Kashmir said:
And ##V(\hat{x}) \int d x|-x\rangle\langle x \mid \psi\rangle## equals ##\int d x V(-x)|-x\rangle\langle x \mid \psi\rangle##
I'm not sure what this means. But, it looks right.
 
I get this expression ##V(\hat{x}) \int d x|-x\rangle\langle x \mid \psi\rangle## while doing another problem ( commutator of parity and V)
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...