Undergrad How to apply potential operator ##V(\hat{x})##

Click For Summary
The discussion centers on clarifying the action of the potential operator ##V(\hat{x})## on position kets, specifically whether it is defined as ##\hat{V}(x)|x\rangle=V(x)|x\rangle##. It is confirmed that for any ket ##|\psi\rangle##, the expression ##V(\hat{x})|\psi\rangle## can be represented as an integral involving ##V(x)## and position kets. Additionally, the transformation of the operator on negative position kets is explored, leading to the expression ##V(\hat{x}) \int d x|-x\rangle\langle x \mid \psi\rangle## equating to ##\int d x V(-x)|-x\rangle\langle x \mid \psi\rangle##. The participants express uncertainty about the implications of this transformation but agree that the mathematical representations appear correct. Overall, the discussion effectively clarifies the operator's action on position states within quantum mechanics.
Kashmir
Messages
466
Reaction score
74
I want some clarification on the potential operator ##V(\hat{x})##. Can you please help me

------------------------------

Is the action of ##V(\hat{x})## defined by its action on the position kets as ##\hat{V}(x)|x\rangle=V(x)|x\rangle##?

Then we'd have for any ket ##|\psi\rangle## that ##V(\hat{x})|\psi\rangle## ##=V(\hat{x}) \int d x|x\rangle\langle x \mid \psi\rangle####=\int d x V(x)|x\rangle\langle x \mid \psi\rangle##

And ##V(\hat{x}) \int d x|-x\rangle\langle x \mid \psi\rangle## equals ##\int d x V(-x)|-x\rangle\langle x \mid \psi\rangle##
Is that correct?
 
Physics news on Phys.org
Kashmir said:
Is the action of ##V(\hat{x})## defined by its action on the position kets as ##\hat{V}(x)|x\rangle=V(x)|x\rangle##?

Then we'd have for any ket ##|\psi\rangle## that ##V(\hat{x})|\psi\rangle## ##=V(\hat{x}) \int d x|x\rangle\langle x \mid \psi\rangle####=\int d x V(x)|x\rangle\langle x \mid \psi\rangle##
This looks right.
Kashmir said:
And ##V(\hat{x}) \int d x|-x\rangle\langle x \mid \psi\rangle## equals ##\int d x V(-x)|-x\rangle\langle x \mid \psi\rangle##
I'm not sure what this means. But, it looks right.
 
I get this expression ##V(\hat{x}) \int d x|-x\rangle\langle x \mid \psi\rangle## while doing another problem ( commutator of parity and V)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 59 ·
2
Replies
59
Views
5K
Replies
14
Views
2K