How to Calculate Christoffel Symbols in Spherical Coordinates?

Click For Summary
SUMMARY

The discussion centers on calculating the Christoffel symbols in spherical coordinates using the metric of Euclidean \(\mathbb{R}^3\), defined as \(ds^2=dr^2+r^2(d\theta^2 + \sin^2{\theta} d\phi^2)\). Participants clarify that the metric tensor \(g_{ab}\) can be represented as a matrix, specifically \(g_{ab}=\begin{pmatrix}1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2\sin^2\theta\end{pmatrix}\). They derive the Christoffel symbols using Wald's formula, \(\Gamma^{\sigma}{}_{\mu \nu}=\frac{1}{2} \sum_{\rho} g^{\sigma \rho} \left( \frac{\partial g_{\nu \rho}}{\partial x^{\mu}} + \frac{\partial g_{\mu \rho}}{\partial x^{\nu}} - \frac{\partial g_{\mu \nu}}{\partial x^{\sigma}} \right)\), and discuss the implications of the symmetry in the indices. The final non-zero components of the Christoffel symbols are explicitly listed.

PREREQUISITES
  • Understanding of differential geometry concepts, particularly Christoffel symbols.
  • Familiarity with spherical coordinates and their metrics.
  • Knowledge of tensor notation and operations, including matrix inverses.
  • Proficiency in calculus, particularly partial derivatives.
NEXT STEPS
  • Study the derivation of Christoffel symbols in different coordinate systems, such as cylindrical coordinates.
  • Learn about geodesic equations and their applications in general relativity.
  • Explore the implications of the symmetry of Christoffel symbols in tensor calculus.
  • Investigate the use of computational tools like Maple for symbolic mathematics in tensor calculations.
USEFUL FOR

Students and researchers in mathematics and physics, particularly those focusing on general relativity, differential geometry, and tensor analysis.

  • #61
Your \LaTeX contains a few typos, but yes, that's correct.

Also, it is worth writing \dot{\phi} and \dot{r} in spherical coordinates;

\dot{r}=b_x\sin\theta\cos\phi+ b_y\sin\theta\sin\phi+b_z\cos\theta

\dot{\phi}=\frac{b_y\cos\phi-b_x\sin\phi}{r\sin\theta}

These will come in handy when calculating \ddot{\theta} (Since \dot{\theta} will be a function of r, \theta and \phi; knowing these derivatives allows you to find \ddot{\theta} quickly, using the chain rule)
 
Last edited by a moderator:
Physics news on Phys.org
  • #62
I recall that a straight line in cartesian coordinates is \ \frac{d^2 x^i}{d \lambda^2} = 0 \ ,
where the curve is parametric in lambda. The parameter can be time.

\frac{d^2 x^i}{d t^2} = 0
 
  • #63
Phrak said:
I recall that a straight line in cartesian coordinates is \ \frac{d^2 x^i}{d \lambda^2} = 0 \ ,
where the curve is parametric in lambda. The parameter can be time.

\frac{d^2 x^i}{d t^2} = 0

This is true; which is why the solution is of the form x^i=a_i+b_it in Cartesians.
 
  • #64
ok. so finally \ddot{\theta}

\theta=\cos^{-1} \left( \frac{z}{r} \right)

\dot{\theta} = - \frac{1}{\sqrt{1 - \left( \frac{z}{r} \right)^2 }} \left( \dot{z} r^{-1} - z r^{-2} \dot{r} \right)

\dot{\theta}=-\frac{1}{\sqrt{r^4-z^2r^2}} \left(\dot{z}r-z \dot{r} \right)

is that ok for \dot{\theta}?
 
Last edited by a moderator:
  • #65
Looks fine so far; now express it in terms of spherical coordinates and b_x, b_y and b_z...
 
  • #66
\dot{\theta}=-\frac{1}{r^2 \sqrt{1-\cos^2{\theta}}} \left( \dot{z}r - z \dot{r} \right) = -\frac{1}{r^2 \sin{\theta}} \left( b_z r - \left( a_z + b_z t \right) \left(b_x \sin{\theta} \cos{\phi} + b_y \sin{\theta} \sin{\phi} + b_z \cos{\theta} \right)

looking ok?
 
Last edited by a moderator:
  • #67
I'd use z=r\cos\theta instead of z=a_z+b_zt...
 
  • #68
\dot{\theta}=-\frac{1}{r \sin{\theta}} \left(b_z - \cos{\theta} \right) \left( b_x \sin{\theta} \cos{\phi} + b_y \sin{\theta} \sin{\phi} + b_z \cos{\theta} \right)
that's ok?

should i take the derivative of the above or should i take the derivative of something shorter like:

\dot{\theta}=-\frac{1}{r \sin{\theta}} \left( \dot{z} r - z \dot{r} \right)?

this gives

\ddot{\theta}=\frac{ \left( \ddot{z} r + \dot{z} \dot{r} - \dot{z} \dot{r} - z \ddot{r} \right) r \sin{\theta} - \left( \dot{r} \sin{\theta} + r \dot{\theta} \cos{\theta} \right) \left( \dot{z} r - z \dot{r} \right) }{r^2 \sin^2{\theta}}

\ddot{\theta}=\frac{-zr \ddot{r} \sin{\theta}- \left( \dot{r} \sin{\theta} + r \dot{\theta} \cos{\theta} \right) \left( \dot{z} r - z \dot{r} \right)}{r^2 \sin^2{\theta}}

on the right lines?
 
Last edited by a moderator:
  • #69
latentcorpse said:
\dot{\theta}=-\frac{1}{r \sin{\theta}} \left(b_z - \cos{\theta} \right) \left( b_x \sin{\theta} \cos{\phi} + b_y \sin{\theta} \sin{\phi} + b_z \cos{\theta} \right)
that's ok?

Do b_z and \cos\theta have the same units? If not, the appearance of the factor b_z-\cos\theta should be a dead giveaway that you've made an error somewhere...(It's always a good idea to check the units of your expression at each step of a complicated calculation, it will help cut down on the number of error you make)
 
Last edited by a moderator:
  • #70
you said i was fine at \dot{\theta}=-\frac{1}{\sqrt{r^4-z^2r^2}} \left(\dot{z}r-z \dot{r} \right)

so i need to change the coords here

\dot{\theta}=-\frac{1}{\sqrt{r^4-r^4 \cos^2{\theta}}} \left(b_z r - r \cos{\theta} \dot{r} \right) = -\frac{1}{r \sin{\theta}} \left( b_z - \cos{\theta} \dot{r} \right)
ok that should be better

now

\ddot{\theta}=- \left( \frac{ \left( - \ddot{r} \cos{\theta} + \dot{r} \dot{\theta} \sin{\theta} \right) r \sin{\theta} - \left( \dot{r} \sin{\theta} + r \dot{\theta} \cos{\theta} \right) \left(b_z - \dot{r} \cos{\theta} \right)}{r^2 \sin^2{\theta}} \right)

is that ok? it doesn't look like it's going to get much simpler : i can bring the minus at the front in and cancel the r \sin{\theta} in the first term i guess...
 
Last edited by a moderator:
  • #71
latentcorpse said:
you said i was fine at \dot{\theta}=-\frac{1}{\sqrt{r^4-z^2r^2}} \left(\dot{z}r-z \dot{r} \right)

so i need to change the coords here

\dot{\theta}=-\frac{1}{\sqrt{r^4-r^4 \cos^2{\theta}}} \left(b_z r - r \cos{\theta} \dot{r} \right) = -\frac{1}{r \sin{\theta}} \left( b_z - \cos{\theta} \dot{r} \right)
ok that should be better

Why not substitute in your expression for \dot{r} here?
 
Last edited by a moderator:
  • #72
i get

\dot{\theta}=-\frac{1}{r \sin{\theta}} \left(b_z-\cos{\theta} \dot{r} \right)

\dot{\theta}=-\frac{1}{r \sin{\theta}} \left( b_z - b_x \sin{\theta} \cos{\theta} \cos{\phi} - b_y \sin{\theta} \cos{\theta} \sin{\phi} - b_z \cos^2{\theta} \right)

\dot{\theta}=-\frac{1}{r \sin{\theta}} \left( b_z \sin^2{\theta} - b_x \sin{\theta} \cos{\theta} \cos{\phi} - b_y \sin{\theta} \cos{\theta} \sin{\phi} \right)

\dot{\theta}=-\frac{1}{r} \left(b_z \sin{\theta} - b_x \cos{\theta} \cos{\phi} - b_y \cos{\theta} \sin{\phi} \right)
now do i take the time derivative of this?

that gives, by product rule:

\ddot{\theta}=r^{-2} \dot{r} \left( b_z \sin{\theta} - b_x \cos{\theta} \cos{\phi} - b_y \cos{\theta} \sin{\phi} \right) - \frac{1}{r} \left( b_z \dot{\theta} \cos{\theta} + b_x \dot{\theta} \sin{\theta} \cos{\phi} + b_x \dot{\phi} \cos{\theta} \sin{\phi} + b_y \dot{\theta} \sin{\theta} \sin{\phi} - b_y \dot{\phi} \cos{\theta} \cos{\phi} \right)

\ddot{\theta} = \frac{\dot{r}}{r^2} \left(b_z \sin{\theta} - b_x \cos{\theta} \cos{\phi} - b_y \cos{\theta} \sin{\phi} \right) - \frac{1}{r} \left( \dot{\theta} \dot{r} + \dot{\phi} b_x \cos{\theta} \sin{\phi} - \dot{\phi} b_y \cos{\theta} \cos{\phi} \right)

is this looking ok? i can't seem to simplify it any further though.
 
Last edited by a moderator:
  • #73
Looks fine to me...now realize that the first term is just

\frac{\dot{r}}{r^2} \left(b_z \sin{\theta} - b_x \cos{\theta} \cos{\phi} - b_y \cos{\theta} \sin{\phi} \right)=-\frac{\dot{r}\dot{\theta}}{r}

And

-\frac{1}{r}\left(\dot{\phi} b_x \cos{\theta} \sin{\phi} - \dot{\phi} b_y \cos{\theta} \cos{\phi} \right)=\sin\theta\cos\theta\dot{\phi}^2

So,

\ddot{\theta}=-\frac{2}{r}\dot{r}\dot{\theta}+ \sin\theta\cos\theta\dot{\phi}^2

Compare that to your second Geodesic equation...:wink:

Edit: Is there a reason you've interpreted \frac{dx^i}{dt}\frac{dx^i}{dt} as \frac{d^2x^i}{dt^2} when calculating your Geodesic equations in post#22?
 
Last edited by a moderator:
  • #74
should the geodesic eqns be

\frac{d^2 r}{dt^2}-r \frac{d \theta}{dt} \frac{d \theta}{dt} - r \sin^2{\theta} \frac{d \phi}{dt} \frac{d \phi}{dt}=0
\frac{d^2 \theta}{dt^2} + \frac{2}{r} \frac{dr}{dt} \frac{d \theta}{dt} - \sin{\theta} \cos{\theta} \frac{d \phi}{dt} \frac{d \phi}{dt}=0
\frac{d^2 \phi}{dt^2} + \frac{2}{r} \frac{dr}{dt} \frac{d \phi}{dt} + 2 \cot{\theta} \frac{d \theta}{dt} \frac{d \phi}{dt}=0?
 
Last edited by a moderator:
  • #75
Yup.
 
  • #76
okay so I am testing the equations now:
looking at the first one i have

\ddot{r}-r \dot{\theta}^2 - r \sin^2{\theta} \dot{\phi}^2
=\frac{b^2}{r}-\frac{ \left( b_x x + b_y y + b_z z \right)^2}{r^3} + b_z \sin{\theta} - b_x \cos{\theta} \cos{\phi} - b_y \cos{\theta} \sin{\phi} + \frac{2}{r} \left( b_x b_y \cos^2{\phi} + b_y^2 \sin{\phi} \cos{\phi} - b_x^2 \sin{\phi} \cos{\phi} -b_x b_y \sin^2{\phi} \right)

i can't get any constructive cancellation after this line though...
 
Last edited by a moderator:
  • #77
It might be easier if you just use the chain rule to find \ddot{r} from this equation \dot{r}=b_x\sin\theta\cos\phi+ b_y\sin\theta\sin\phi+b_z\cos\theta...that way everything is in Spherical coords.
 
Last edited by a moderator:
  • #78
so \ddot{r}= \dot{\theta} \left( b_x \cos{\theta} \cos{\phi} + b_y \cos{\theta} \sin{\phi} - b_z \sin{\theta} \right) + \dot{\phi} \left( b_y \sin{\theta} \cos{\phi} - b_x \sin{\theta} \sin{\phi} \right)

\ddot{r}=r \dot{\theta}^2 + \dot{\phi} \left( b_y \sin{\theta} \cos{\phi} - b_x \sin{\theta} \sin{\phi} \right)

\ddot{r}=r \dot{\theta}^2 + r \sin^2{\theta} \dot{\phi}^2
so geodesic eqns 1 and 2 are obviously satisfied.

the third one is giving me a bit of grief though:

\ddot{\phi} + \frac{2}{r} \dot{r} \dot{\phi} + 2 \cot{\theta} \dot{\theta} \dot{\phi}
=\frac{-2 \left(b_xb_y \cos^2{\phi} + b_y^2 \sin{\phi} \cos{\phi} - b_x^2 \sin{\phi} \cos{\phi} - b_x b_y \sin^2{\phi} \right)}{r^2 \sin^2{\theta}}
+\frac{2 \left(b_x b_y \sin{\theta} \cos^2{\phi} - b_x^2 \sin{\theta} \cos{\theta} \cos{\phi} + b_y^2 \sin{\theta} \cos{\phi} \sin{\phi} - b_x b_y \sin{\theta} \sin^2{\phi} + b_y b_z \cos{\theta} \cos{\phi} - b_x b_z \sin{\phi} \cos{\theta} \right) }{r^2 \sin{\theta}}
-\frac{2 \cos{\theta}}{r^2 \sin^2{\theta}} \left(b_y b_z \sin{\theta} \cos{\phi} - b_x b_y \cos{\theta} \cos^2{\phi} - b_y^2 \cos{\theta} \cos{\phi} \sin{\phi} - b_x b_z \sin{\theta} \sin{\phi} - b_x^2 \cos{\theta} \sin{\phi} \cos{\phi} + b_x b_y \cos{\theta} \sin{\phi} \cos{\phi} \right)

which is proving hard to simplify. in particular the second term has a denominator that is different from that of the the first two terms - should i multiply through by \frac{\sin{\theta}}{\sin{\theta}}?
 
Last edited by a moderator:
  • #79
It shouldn't be too hard to simplify; just collect terms with b_x^2 in them, and terms with b_xb_y etc..
 
  • #80
that goes to

\frac{2 b_x b_y}{r^2 \sin^2{\theta}} \left( - \cos^2{\phi} + \sin^2{\phi} + \sin^2{\theta} \cos^2{\phi} - \sin^2{\theta} \sin^2{\phi} + \cos^2{\theta} \cos^2{\phi} - \cos^2{\theta} \sin{\phi} \cos{\phi} \right)
+\frac{2b_x b_z}{r^2 \sin^2{\theta}} \left(- \sin{\theta} \cos{\theta} \sin{\phi} + \sin{\theta} \sin{\phi} \right) = \frac{2 b_y b_z}{r^2 \sin^2{\theta}} \left( \sin{\theta} \cos{\theta} \cos{\phi} - \sin{\theta} \cos{\phi} \right)
+\frac{2 b_y^2}{r^2 \sin^2{\theta}} \left( - \sin{\phi} \cos{\phi} + \sin^2{\theta} \sin{\phi} \cos{\phi} + \cos^2{\theta} \sin{\phi} \cos{\phi} \right) + \frac{2 b_x^2}{r^2 \sin^2{\theta}} \left( \sin{\phi} \cos{\phi} - \sin^2{\theta} \cos{\theta} \cos{\phi} + \cos^2{\theta} \sin{\phi} \cos{\phi} \right)

looks like I've made a mistake somewhere but i can't see where.
 
Last edited by a moderator:
  • #81
The quickest way to do this is probably to start with this expression (from post #60)

\ddot{\phi}=\frac{-2r^2 \sin^2{\theta} \left(b_x \cos{\phi} + b_y \sin{\phi} \right) \left( b_y \cos{\phi} - b_x \sin{\phi} \right)}{r^4 \sin^4{\theta}}=\frac{-2\dot{\phi} \left(b_x \cos{\phi} + b_y \sin{\phi} \right) }{r\sin{\theta}}
 
  • #82
got it finally! thank you so much for your help!

what did you mean in post 23 when you asked if there could be any other solutions?
how would i go about answering that?
 
  • #83
Wald discusses a certain uniqueness theorem right after equation 3.3.5...does that help you here?:wink:
 
  • #84
well the idea behind it would suggest that, no, there can be no other solutions.

however, the theorem says that solutions are only unique if we define a point p in hte manifold M and a tangent vector, T^a \in V_p. In the question, neither of these were specified so perhaps that does leave scope for alternative solutions?
 
  • #85
Realize that any potential solution \textbf{r}(t) can be expanded in a Taylor series as

\textbf{r}(t)=\textbf{a}+\textbf{b}t+\textbf{c}t^2+\ldots

If \textbf{a} and \textbf{b} are specified, the uniqueness theorem tells you there is a unique solution...but you just showed that \textbf{r}(t)=\textbf{a}+\textbf{b}t satisfies the geodesic equation for all \textbf{a} and \textbf{b}...therfore ____?
 
  • #86
therefore straight lines are the unique solution as the values of a and b in the taylor expansion are precisely those of the coefficients a and b in the straight line eqn given in Cartesian coordinates, is that ok?

how did you manage to get round the fact that the point p and the tangent weren't specified though?
 
  • #87
Doesn't \textbf{a} specify a point on the geodesic (where t=0) ?...And the tangent vector is___?
 
  • #88
the vector \vec{b}. great. thanks.
 
Last edited by a moderator:

Similar threads

  • · Replies 18 ·
Replies
18
Views
3K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K