MHB How to calculate conditional expectation E[g(x) | x>= Q] for x ~ exp(1)

Click For Summary
To calculate the conditional expectation E[g(x) | x >= Q] for an exponentially distributed random variable X ~ exp(1), one must integrate the function g(x) over the interval from Q to infinity, weighted by the probability density function. The function g(x) is defined as g(x) = A/exp(-bQ+c) * [(1 + exp(-bQ+c))/(1 + exp(-dx+c)) - 1]. The proposed method involves using the integral E[g[x]] = ∫_Q^∞ g(x) * f(x) dx, where f(x) = e^(-x). The solution is confirmed to be correct, utilizing the Law of the Unconscious Statistician (LOTUS) for the calculation. This approach effectively addresses the conditional expectation under the specified constraints.
user_01
Messages
5
Reaction score
0
Given that $X$ is exponentially distributed continuous random variable $X\sim \exp(1)$ and $g(x)$ is as below. How can I find the Expectectaion of $g(x)$ for the condition that $x\geq Q$, i.e. $\mathbb{E}[g(x)\ | \ x\geq Q]$.

$$g(x) = \frac{A}{\exp(-bQ+c)}\Big(\frac{1 + \exp(-bQ+c)}{1 + \exp(-dx+c)}-1\Big)$$

I suppose I should start by considering an event $\Phi$ such that $\Phi = \mathbb{P}[x \geq Q]$. However, I don't know how to go around this condition.

All constants are positive real values.
 
Physics news on Phys.org
Is the following solution correct for the above question? If it is OK, then I have found the solution. But I will really appreciate if someone can let me know if the following method is correct.

$$\mathbb{E}[g[x]] = \int_Q^\infty g(x). f(x) dx$$

$$\mathbb{E}[g[x]]= \int_Q^\infty\frac{A}{\exp(-bQ+c)}\Big(\frac{1 + \exp(-bQ+c)}{1 + \exp(-dx+c)}-1\Big) e^{-x} dx$$
 
Hi user_01,

Yes, your proposed solution is correct. The relevant theorem here is known as the Law of the Unconscious Statistician (LOTUS). See here.
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K