MHB How to calculate LCM for rational equations ?

  • Thread starter Thread starter kupid
  • Start date Start date
  • Tags Tags
    Rational
AI Thread Summary
To calculate the least common multiple (LCM) for rational equations, first factor all denominator polynomials completely. Next, create a list of each unique factor, ensuring to include the highest power of each factor present in any denominator. The resulting list of factors and their powers constitutes the LCM. For example, from the denominators 4x, x², and 2x², the LCM is determined to be 4x². Understanding the importance of expressing factors in their simplest form can help clarify the process.
kupid
Messages
34
Reaction score
0
To calculate an LCM for a rational function, follow these steps:
1. Factor all denominator polynomials completely.
2. Make a list that contains one copy of each factor, all multiplied together.
3. The power of each factor in that list should be the highest power that factor is
raised to in any denominator.
4. The list of factors and powers you generated is the LCM.

View attachment 6872

4x = 2.2.x , x2 = x.x , 2x2 =2.x.x

So LCM = 2.2.x.x = 4x2

I still don't understand this clearly ...
 

Attachments

  • rational_equations_1.png
    rational_equations_1.png
    14 KB · Views: 128
Mathematics news on Phys.org
Hey kupid,

Let's run through the steps.

kupid said:
To calculate an LCM for a rational function, follow these steps:
1. Factor all denominator polynomials completely.

$4x=2^2\cdot x,\quad x^2,\quad 2x^2 = 2\cdot x^2$

kupid said:
2. Make a list that contains one copy of each factor, all multiplied together.

$2\cdot x$

kupid said:
3. The power of each factor in that list should be the highest power that factor is
raised to in any denominator.

$2^2\cdot x^2$

kupid said:
4. The list of factors and powers you generated is the LCM.

$LCM=2^2\cdot x^2 = 4x^2$
 
Is there any mistake in the above post , because i am a bit confused .

To calculate an LCM
for a rational function, follow these steps:
1. Factor all denominator polynomials completely.
4x = 2.2.x = 22.x , x2 = x.x , 2x2 =2.x.x
2. Make a list that contains one copy of each factor from the "pairs of factors ", all multiplied together.

2.x

3. The power of each factor in that list should be the highest power that factor is
raised to in any denominator.

22.x2

4. The list of factors and powers you generated is the LCM

LCM = 22.x2 = 4x2
 
kupid said:
Is there any mistake in the above post , because i am a bit confused .

No mistake. That's fine. (Nod)

It's just that when we factor completely, there's little point in writing out a power as a product.
We can keep it as a power.
So instead of writing $7x^8=7\cdot x\cdot x\cdot x\cdot x\cdot x\cdot x\cdot x\cdot x$, we can just leave it as $7x^8$.
 
OK , Thanks a lot .
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top