How to calculate required torque for a robot arm

  • Thread starter Thread starter meakerb
  • Start date Start date
  • Tags Tags
    Torque
AI Thread Summary
To calculate the required torque for a robot arm, the first step involves determining the moment of inertia for the hand and load to find the torque needed for the wrist motor. The shoulder motor's torque must consider the interaction with the wrist motor, as both motors will operate simultaneously, complicating the calculations. A worst-case scenario should be analyzed, focusing on maximum load and acceleration conditions for both motors. The torque for the wrist motor includes the vertical acceleration at the wrist joint, while the shoulder motor's torque is derived from the combined mass of the arm, hand, and load. Detailed calculations and diagrams are essential for accurately sizing the motors.
meakerb
Messages
1
Reaction score
0
TL;DR Summary
I am trying to size the two motors needed for a robot arm I'm building. The pivot point for one motor is (through two pulleys) at the end of an arm driven by another motor.
I am trying to size the two motors needed for a robot arm I'm building.
The first motor, which I call the wrist motor, drives a pulley on a fixed axis that connects to a second pulley (of the same size) which is attached to a hand and load.
Screenshot 2023-10-26 161531.png

I can calculate the moment of inertia for the hand and load about the axis of the second pulley, and therefore calculate the required torque for the wrist motor.

However, the second motor, which I call the shoulder motor, also rotates on the same fixed axis as the wrist motor, but it rotates an arm that holds the second pulley.
Screenshot 2023-10-26 161041.png

The first diagram, and my calculation for required torque for the wrist motor, assumed the shoulder motor was fixed (thereby fixing the axis of pulley 2). To calculate the required torque of the shoulder motor, do I assume that the wrist motor is fixed and use the parallel axis theroem for the moi of the hand & load, plus the moi of the arm? This doesn't seem right to me since, if the wrist motor is fixed, the gearing effect of the two pulleys will keep the hand & load at the same relative angle to the ground.
Screenshot 2023-10-26 170505.png

In reality, both motors will be moving at the same time. Any insight is greatly appreciated.
 
Engineering news on Phys.org
You have a motor bolted to a motor. If we imagine holding the shoulder motor still while rotating the wrist motor its clear that that any torque that is developed in the wrist motor, must be resisted by the shoulder motor. So...what happens when we start simultaneously rotating the shoulder motor. It seems clear to me that the shoulder motor (isolated from the system) has torque acting on it that depends on what the wrist motor is doing. How it all shakes out seems complicated at the moment.

I think we should start with a FBD of the blue arm at the end.
 
meakerb said:
I am trying to size the two motors needed for a robot arm I'm building.

meakerb said:
Any insight is greatly appreciated.
Since this is an engineering, as opposed to a physics problem, we need only find the worst case torque for each motor. That will be the case where:

The arm is horizontal
and
The hand is horizontal
and
The hand is holding the heaviest load with the center of gravity (CG) farthest out
and
The hand is accelerating clockwise at maximum ##radians/sec^2##
and
The arm is accelerating clockwise at maximum ##radians/sec^2##

There is more than one way to solve this. This is how I would attack the problem.

1) Given the maximum acceleration of the arm, calculate the vertical acceleration of the wrist joint in ##inches/sec^2##
2) The torque at the wrist will be the value you calculated PLUS the vertical acceleration of the arm at the wrist times the distance to the hand/load CG times the mass of the hand/load. This is the required peak torque of the wrist motor.
3) Pretend that the wrist is locked in a straight line with the arm. Calculate the arm torque at maximum arm acceleration for that case. This calculation uses the total mass of the arm, hand, and load.
4) The peak torque requirement for the arm motor is the sum of the torques calculated in Steps 2 and 3.
5) The peak RPM of the arm motor is merely the maximum arm angular velocity.
6) The peak RPM of the wrist motor is calculated from the maximum hand angular velocity when the arm is moving at maximum angular velocity in the opposite direction.

This problem will benefit from careful step by step note taking. Diagrams are good.
 
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top