MHB How to Calculate the Area Between Two Vectors in R^n?

  • Thread starter Thread starter poissonspot
  • Start date Start date
  • Tags Tags
    Area Vectors
poissonspot
Messages
39
Reaction score
0
Hi, I wondered whether a well known expression is known that computes the area between two vectors in R^n. By area between two vectors, I mean the area that would be computed by considering the subspace spanned by the two, projecting the entire space to a "parallel plane" and then finally given by the magnitude of the cross product of the image of the vectors under this projection. Thank you,
 
Last edited:
Physics news on Phys.org
conscipost said:
Hi, I wondered whether a well known expression is known that computes the area between two vectors in R^n. By area between two vectors, I mean the area that would be computed by considering the subspace spanned by the two, projecting the entire space to a "parallel plane" and then finally given by the magnitude of the cross product of the image of the vectors under this projection.
In other words, given vectors $a,b$ in $\mathbb{R}^n$, you want the area $A$ of the parallelogram with vertices at the origin, $a$, $b$ and $a+b.$ If the angle between the vectors is $\theta$, this can be expressed in terms of the dot product by $$A = |a||b|\sin\theta = \sqrt{|a|^2|b|^2(1-\cos^2\theta)} = \sqrt{|a|^2|b|^2 - (a\cdot b)^2}.$$
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
15
Views
2K
Replies
26
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 43 ·
2
Replies
43
Views
7K
Replies
1
Views
1K
Replies
7
Views
3K
Replies
3
Views
2K
Replies
4
Views
3K