How to calculate the four-momentum of a photon in FRW Metric

JohnH123
Messages
3
Reaction score
0
Homework Statement
Find the 4-momentum of a photon moving in the x-direction. That is, find dt/dλ
and dx/dλ as functions of a. Note that dt/dλ at a = 1 is the present-day frequency f0.
Relevant Equations
The spatially flat Robertson-Walker Metric: ds^2 = -dt^2 + a^2(t)[dr^2+r^2(dtheta^2 + sin^2(theta)dphi^2)]
I have calculated the Christoffel symbols for the above given metric, but I don't understand how to calculate a photon's four-momentum using this information. I believe it has something to do with the null geodesic equation but I can't understand how to put that information into the problem. Thank you.
 
Physics news on Phys.org
This problem can be done using geodesic equation of motion. But there is a simpler way to do using Lagrangian mechanics. The Lagrangian of the given metric is:
##L= g_{ij}\frac{dx^i}{d\lambda}\frac{dx^j}{d\lambda}= -\dot t^2+ a^2(t)(\dot r^2+ r^2 \dot \theta^2+ r^2 \sin^2\theta \dot \phi^2) ##

Now, the momentum is :
##p_i=\frac{\partial L}{\partial \dot x_i}##
Now, simplify it for example using the fact that metric is isotropic to evaluate ##r_{th}## component of momentum. For ##t## component, you will get same result as geodesic equation. Solve it (again using the fact that metric is isotropic to remove ##\theta## and ##\phi## components from metric).
 
Abhishek11235 said:
This problem can be done using geodesic equation of motion. But there is a simpler way to do using Lagrangian mechanics. The Lagrangian of the given metric is:
##L= g_{ij}\frac{dx^i}{d\lambda}\frac{dx^j}{d\lambda}= -\dot t^2+ a^2(t)(\dot r^2+ r^2 \dot \theta^2+ r^2 \sin^2\theta \dot \phi^2) ##

Now, the momentum is :
##p_i=\frac{\partial L}{\partial \dot x_i}##
Now, simplify it for example using the fact that metric is isotropic to evaluate ##r_{th}## component of momentum. For ##t## component, you will get same result as geodesic equation. Solve it (again using the fact that metric is isotropic to remove ##\theta## and ##\phi## components from metric).
Just so I’m clear, ##\frac{\partial L}{\partial \dot x_i}## means the partial of the lagrangian with respect to each coordinate right? So the four momentum has components in coordinates {t, r, ##\theta##, ##\phi##}, so those components are found by finding ##\frac{\partial L}{\partial \dot t}##, ##\frac{\partial L}{\partial \dot r}## and so on, correct?
 
Abhishek11235 said:
This problem can be done using geodesic equation of motion. But there is a simpler way to do using Lagrangian mechanics. The Lagrangian of the given metric is:
##L= g_{ij}\frac{dx^i}{d\lambda}\frac{dx^j}{d\lambda}= -\dot t^2+ a^2(t)(\dot r^2+ r^2 \dot \theta^2+ r^2 \sin^2\theta \dot \phi^2) ##

Now, the momentum is :
##p_i=\frac{\partial L}{\partial \dot x_i}##
Now, simplify it for example using the fact that metric is isotropic to evaluate ##r_{th}## component of momentum. For ##t## component, you will get same result as geodesic equation. Solve it (again using the fact that metric is isotropic to remove ##\theta## and ##\phi## components from metric).
Also, could you please expand on how I could calculate the four-momentum using the geodesic equation? I believe that’s the method my professor would like me to use, as stated in the problem. Thank you.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top