How to Calculate the Value of a Given Sum in Mathematics?

  • Context: MHB 
  • Thread starter Thread starter hxthanh
  • Start date Start date
  • Tags Tags
    Sum Value
Click For Summary
SUMMARY

The discussion focuses on calculating the sum defined by the formula $S_n=\displaystyle \sum_{k=1}^n\dfrac{2k+1-n}{(k+1)^2(n-k)^2+1}$ for integer values of $n$ greater than or equal to 1. Participants explore various mathematical techniques to simplify and evaluate the sum. The conversation highlights the importance of understanding series and summation techniques in advanced mathematics.

PREREQUISITES
  • Understanding of summation notation and series
  • Familiarity with algebraic manipulation of fractions
  • Knowledge of limits and convergence in sequences
  • Basic experience with mathematical proofs and derivations
NEXT STEPS
  • Research advanced techniques in series convergence
  • Study the properties of summation and series in calculus
  • Explore mathematical software tools for symbolic computation, such as Wolfram Alpha
  • Learn about generating functions and their applications in summation
USEFUL FOR

Mathematicians, students studying advanced calculus, and anyone interested in series and summation techniques in mathematics.

hxthanh
Messages
15
Reaction score
0
Put $1\le n\in\mathbb Z$
Find the Sum:
$S_n=\displaystyle \sum_{k=1}^n\dfrac{2k+1-n}{(k+1)^2(n-k)^2+1}$
 
Mathematics news on Phys.org
Re: Find the Sum

My solution
Denote $j=n-k-1$ then $k=1 \to j=n-2 \quad ;k=n \to j=-1$.
We get:
\begin{array}{rcl}S_n &=& \sum\limits_{k = 1}^n {\frac{{2k + 1 -n}}{{{{\left( {n - k} \right)}^2}{{\left( {k + 1} \right)}^2} + 1}}} = \sum\limits_{j = - 1}^{n - 2} {\frac{{n - 1 - 2j}}{{{{\left( {j + 1} \right)}^2}{{\left( {n - j} \right)}^2} + 1}}} \\\Rightarrow 2S_n &=& \sum\limits_{k = 1}^n {\frac{{2k + 1 - n}}{{{{\left( {n - k} \right)}^2}{{\left( {k + 1} \right)}^2} + 1}}} + \sum\limits_{k = - 1}^{n - 2} {\frac{{n - 1 - 2k}}{{{{\left( {k + 1} \right)}^2}{{\left( {n - k} \right)}^2} + 1}}} \\&=& n + 1 + \frac{{n - 1}}{{{n^2} + 1}} + \sum\limits_{k = 1}^{n - 2} {\frac{{2k + 1 - n}}{{{{\left( {n - k} \right)}^2}{{\left( {k + 1} \right)}^2} + 1}}} \\&+& \sum\limits_{k = 1}^{n - 2} {\frac{{n - 1 - 2k}}{{{{\left( {n - k} \right)}^2}{{\left( {k + 1} \right)}^2} + 1}}} + \left( { n + 1} \right) + \frac{{n - 1}}{{{n^2} + 1}}\\\Rightarrow S_n &=& n +1 + \frac{{n - 1}}{{{n^2} + 1}}\\&=& \boxed{\displaystyle \frac{{ n\left( {{n^2} + n + 2} \right)}}{{{n^2} + 1}}}\end{array}
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K