MHB How to Calculate the Value of a Given Sum in Mathematics?

  • Thread starter Thread starter hxthanh
  • Start date Start date
  • Tags Tags
    Sum Value
Click For Summary
To calculate the sum \( S_n = \sum_{k=1}^n \frac{2k+1-n}{(k+1)^2(n-k)^2+1} \), one approach involves simplifying the expression in the summation. The numerator \( 2k + 1 - n \) can be analyzed in relation to the denominator, which consists of quadratic terms in \( k \) and \( n \). Evaluating specific values of \( n \) can provide insights into the behavior of the sum. The discussion emphasizes the importance of algebraic manipulation and potentially applying limits or series convergence techniques. Overall, the calculation of \( S_n \) requires careful consideration of both the numerator and denominator's interactions.
hxthanh
Messages
15
Reaction score
0
Put $1\le n\in\mathbb Z$
Find the Sum:
$S_n=\displaystyle \sum_{k=1}^n\dfrac{2k+1-n}{(k+1)^2(n-k)^2+1}$
 
Mathematics news on Phys.org
Re: Find the Sum

My solution
Denote $j=n-k-1$ then $k=1 \to j=n-2 \quad ;k=n \to j=-1$.
We get:
\begin{array}{rcl}S_n &=& \sum\limits_{k = 1}^n {\frac{{2k + 1 -n}}{{{{\left( {n - k} \right)}^2}{{\left( {k + 1} \right)}^2} + 1}}} = \sum\limits_{j = - 1}^{n - 2} {\frac{{n - 1 - 2j}}{{{{\left( {j + 1} \right)}^2}{{\left( {n - j} \right)}^2} + 1}}} \\\Rightarrow 2S_n &=& \sum\limits_{k = 1}^n {\frac{{2k + 1 - n}}{{{{\left( {n - k} \right)}^2}{{\left( {k + 1} \right)}^2} + 1}}} + \sum\limits_{k = - 1}^{n - 2} {\frac{{n - 1 - 2k}}{{{{\left( {k + 1} \right)}^2}{{\left( {n - k} \right)}^2} + 1}}} \\&=& n + 1 + \frac{{n - 1}}{{{n^2} + 1}} + \sum\limits_{k = 1}^{n - 2} {\frac{{2k + 1 - n}}{{{{\left( {n - k} \right)}^2}{{\left( {k + 1} \right)}^2} + 1}}} \\&+& \sum\limits_{k = 1}^{n - 2} {\frac{{n - 1 - 2k}}{{{{\left( {n - k} \right)}^2}{{\left( {k + 1} \right)}^2} + 1}}} + \left( { n + 1} \right) + \frac{{n - 1}}{{{n^2} + 1}}\\\Rightarrow S_n &=& n +1 + \frac{{n - 1}}{{{n^2} + 1}}\\&=& \boxed{\displaystyle \frac{{ n\left( {{n^2} + n + 2} \right)}}{{{n^2} + 1}}}\end{array}
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K