MHB How to Calculate the Value of a Given Sum in Mathematics?

  • Thread starter Thread starter hxthanh
  • Start date Start date
  • Tags Tags
    Sum Value
Click For Summary
To calculate the sum \( S_n = \sum_{k=1}^n \frac{2k+1-n}{(k+1)^2(n-k)^2+1} \), one approach involves simplifying the expression in the summation. The numerator \( 2k + 1 - n \) can be analyzed in relation to the denominator, which consists of quadratic terms in \( k \) and \( n \). Evaluating specific values of \( n \) can provide insights into the behavior of the sum. The discussion emphasizes the importance of algebraic manipulation and potentially applying limits or series convergence techniques. Overall, the calculation of \( S_n \) requires careful consideration of both the numerator and denominator's interactions.
hxthanh
Messages
15
Reaction score
0
Put $1\le n\in\mathbb Z$
Find the Sum:
$S_n=\displaystyle \sum_{k=1}^n\dfrac{2k+1-n}{(k+1)^2(n-k)^2+1}$
 
Mathematics news on Phys.org
Re: Find the Sum

My solution
Denote $j=n-k-1$ then $k=1 \to j=n-2 \quad ;k=n \to j=-1$.
We get:
\begin{array}{rcl}S_n &=& \sum\limits_{k = 1}^n {\frac{{2k + 1 -n}}{{{{\left( {n - k} \right)}^2}{{\left( {k + 1} \right)}^2} + 1}}} = \sum\limits_{j = - 1}^{n - 2} {\frac{{n - 1 - 2j}}{{{{\left( {j + 1} \right)}^2}{{\left( {n - j} \right)}^2} + 1}}} \\\Rightarrow 2S_n &=& \sum\limits_{k = 1}^n {\frac{{2k + 1 - n}}{{{{\left( {n - k} \right)}^2}{{\left( {k + 1} \right)}^2} + 1}}} + \sum\limits_{k = - 1}^{n - 2} {\frac{{n - 1 - 2k}}{{{{\left( {k + 1} \right)}^2}{{\left( {n - k} \right)}^2} + 1}}} \\&=& n + 1 + \frac{{n - 1}}{{{n^2} + 1}} + \sum\limits_{k = 1}^{n - 2} {\frac{{2k + 1 - n}}{{{{\left( {n - k} \right)}^2}{{\left( {k + 1} \right)}^2} + 1}}} \\&+& \sum\limits_{k = 1}^{n - 2} {\frac{{n - 1 - 2k}}{{{{\left( {n - k} \right)}^2}{{\left( {k + 1} \right)}^2} + 1}}} + \left( { n + 1} \right) + \frac{{n - 1}}{{{n^2} + 1}}\\\Rightarrow S_n &=& n +1 + \frac{{n - 1}}{{{n^2} + 1}}\\&=& \boxed{\displaystyle \frac{{ n\left( {{n^2} + n + 2} \right)}}{{{n^2} + 1}}}\end{array}
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
15
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K