- #1
Kumar8434
- 121
- 5
I can't prove it and I've got it by some intuition because not many properties of superlogarithms are known. I don't think anyone can prove it but is there some way to at least check if it is correct.
The limit is:
$$\lim_{h\rightarrow0}slog_{[log_xx+h]}[log_{f(x)}f(x+h)]$$
where ##slog## is the super-logarithm.
What I need to check is if this limit equals:
$$log_{log_xf(x)}[\frac{d(f(x))}{dx}\frac{x}{y}]$$
for any function ##f(x)##. It's true when ##f(x)=x^n##. But is there some way to check if it's right or wrong for other functions?
The limit is:
$$\lim_{h\rightarrow0}slog_{[log_xx+h]}[log_{f(x)}f(x+h)]$$
where ##slog## is the super-logarithm.
What I need to check is if this limit equals:
$$log_{log_xf(x)}[\frac{d(f(x))}{dx}\frac{x}{y}]$$
for any function ##f(x)##. It's true when ##f(x)=x^n##. But is there some way to check if it's right or wrong for other functions?
Last edited: