JD_PM
- 1,125
- 156
- Homework Statement
- Consider the orbits of massless particles, with affine parameter ##\lambda##, in the equatorial plane (i.e. ##\theta = \pi /2##) of a Kerr black hole
Show that
\begin{equation*}
\left( \frac{dr}{d \lambda} \right)^2 = \dot r^2 = \frac{\Sigma^2}{\rho^4}\left( E- L \ W_+ (r)\right)\left(E-L \ W_- (r)\right)
\end{equation*}
To do so, you will have to explicitly find the expressions for ##W_+ (r)## and ##W_- (r)##
This is exercise 2, section a) Chapter 6 in Carroll's book
- Relevant Equations
- N/A
The Kerr metric is given by
\begin{align*}
(ds)^2 &= -\left(1-\frac{2GMr}{\rho^2} \right)(dt)^2 - \frac{2GMar \sin^2 \theta}{\rho^2}(dt d\phi + d\phi dt) \\ &+ \frac{\rho^2}{\Delta}(dr)^2 + \rho^2 (d \theta)^2 + \frac{\sin^2 \theta}{\rho^2} \left[ \underbrace{(r^2+a^2)^2-a^2 \Delta \sin^2 \theta}_{\Sigma^2} \right] (d \phi)^2
\end{align*}
Where
\begin{equation*} \Delta = r^2 -2GMr+a^2 \end{equation*}
\begin{equation*} \rho^2 = r^2+a^2 \cos^2 \theta \end{equation*}
\begin{equation*}
\Sigma^2 = (r^2 + a^2)^2 - a^2 \Delta \sin^2 \theta
\end{equation*}
The Kerr metric at ##\theta = \pi /2## gets simplified to
\begin{align*}
(ds)^2 &= -\left(1-\frac{2GM}{\rho} \right)(dt)^2 - \frac{2GMa}{\rho}(dt d\phi + d\phi dt) \\ &+ \frac{r^2}{\Delta}(dr)^2 + \frac{\Sigma^2}{\rho^2} (d \phi)^2
\end{align*}
Where we used
\begin{equation*} \rho^2 = r^2 \end{equation*}
\begin{equation*}
\Sigma^2 = (r^2 + a^2)^2 - a^2 \Delta
\end{equation*}
The metric coefficients in Kerr's metric are all independent of the coordinate ##t##, which means that any time translation will leave the metric invariant. Then the vector field ##\partial / \partial t## is a (time-like) Killing-vector field i.e.
\begin{equation*}
K^{\mu} = (1,0,0,0)
\end{equation*}\begin{equation*}
K_{\mu} = g_{\mu \nu}K^{\nu}=\left( -\left(1-\frac{2GM}{\rho} \right),0,0,0\right)
\end{equation*}
The metric coefficients are all also independent of the coordinate ##\phi##. Thus
\begin{equation*}
R^{\mu} = (0,0,0,1)
\end{equation*}
\begin{equation*}
R_{\mu} = g_{\mu \nu}R^{\nu}=\left( 0,0,0, \frac{\Sigma^2}{\rho^2} \right)
\end{equation*}
Parameterizing a geodesic by an affine parameter ##\lambda## and defining a four-velocity vector ##U^{\mu}=dx^{\mu}/d \lambda := \dot x^{\mu}##, given a Killing vector ##K_{\mu}##, the have that the following quantity (along the geodesic) is conserved (Carroll Chapter 5, EQ. 5.54)
\begin{equation*}
K_{\mu}U^{\mu} = \text{constant}
\end{equation*}
Thus we get the following conserved quantities
\begin{equation*}
E= -K_{\mu}U^{\mu} = \left(1-\frac{2GM}{\rho} \right) \dot t \Rightarrow \dot t = \frac{E}{1-\frac{2GM}{\rho}}
\end{equation*}\begin{equation*}
L=R_{\mu}U^{\mu}=\frac{\Sigma^2}{\rho^2} \dot \phi \Rightarrow \dot \phi = \frac{\rho^2}{\Sigma^2} L
\end{equation*}
Where ##E## stands for the conserved energy (where we introduced a negative sign to turn ##E##'s sign positive) and ##L## for the conserved ##z-##component of the angular momentum.
The geodesic equation and the metric compatibility condition imply an extra conserved quantity (Which is given in equation ##(5.55)## in Carroll's book. Besides, the parameter ##\lambda## is chosen such that ##\epsilon=1## for massive particles and ##\epsilon=0## for massless particles. The case ##\epsilon=-1## simply corresponds to spacelike geodesics).
\begin{equation*}
\epsilon=-g_{\mu \nu}\frac{d x^{\mu}}{d \lambda}\frac{d x^{\nu}}{d \lambda}
\end{equation*}
Expanding it yields
\begin{align*}
\epsilon &= -g_{tt} \dot t^2 -g_{rr} \dot r^2 -2g_{t \phi} \dot t \dot \phi -g_{\phi \phi} \dot \phi^2 \\
&= \left(1-\frac{2GM}{\rho} \right) \dot t^2 -\frac{\rho^2}{\Delta} \dot r^2 + \frac{4GMa}{\rho}\dot t \dot \phi -\frac{\Sigma^2}{\rho^2} \dot \phi^2
\end{align*}
Plugging ##\dot t## and ##\dot \phi## into above's expression and rearranging yields
\begin{align*}
&\large \epsilon = \frac{E^2}{1-\frac{2GM}{\rho}} - \frac{\rho^2}{\Delta} \dot r^2 + \frac{4GM a \rho}{\Sigma^2 \left(1-\frac{2GM}{\rho}\right)} EL - \frac{\rho^2 L^2}{\Sigma^2} \Rightarrow\\
&\Rightarrow \dot r^2 = \frac{\Delta}{\rho^2}\left[ \frac{E^2}{1-\frac{2GM}{\rho}} + \frac{4GM a \rho}{\Sigma^2 \left(1-\frac{2GM}{\rho}\right)} EL - \frac{\rho^2 L^2}{\Sigma^2} -\epsilon \right] \Rightarrow\\
&\Rightarrow \dot r^2 = \frac{\Sigma^2}{\rho^4}\left[ \frac{\rho^2 E^2 \Delta}{\Sigma^2 \left(1-\frac{2GM}{\rho}\right)} + \frac{4GM a \rho^3 \Delta}{\Sigma^4 \left(1-\frac{2GM}{\rho}\right)} EL - \Delta \frac{\rho^4 L^2}{\Sigma^4} -\frac{\rho^2 \Delta \epsilon}{\Sigma^2} \right]
\end{align*}
So my result is (recalling that we deal with massless particles i.e. ##\epsilon =0##)
\begin{equation*}
\boxed{\dot r^2 = \frac{\Sigma^2}{\rho^4}\left[ \frac{\rho^2 E^2 \Delta}{\Sigma^2 \left(1-\frac{2GM}{\rho}\right)} + \frac{4GM a \rho^3 \Delta}{\Sigma^4 \left(1-\frac{2GM}{\rho}\right)} EL - \Delta \frac{\rho^4 L^2}{\Sigma^4} \right]}
\end{equation*}
Yikes!
note my naïve attempt to match the provided solution but I see no straightforward way to get ##W_{\pm} (r)##...
So my question is: how to show that the bracketed term is equal to
\begin{equation*}
\left( E- LW_+ (r)\right)\left(E-LW_- (r)\right)
\end{equation*}
?
I appreciate your help.
I wish you a good 2021
Thank you!
PS: There is another method to get the radial geodesic of the Kerr metric and that is explicitly solving the geodesic equation for ##\mu = r##. That method is much more tedious since it implies computing (some) Christoffel symbols for the Kerr metric... which is not really enjoyable!
\begin{align*}
(ds)^2 &= -\left(1-\frac{2GMr}{\rho^2} \right)(dt)^2 - \frac{2GMar \sin^2 \theta}{\rho^2}(dt d\phi + d\phi dt) \\ &+ \frac{\rho^2}{\Delta}(dr)^2 + \rho^2 (d \theta)^2 + \frac{\sin^2 \theta}{\rho^2} \left[ \underbrace{(r^2+a^2)^2-a^2 \Delta \sin^2 \theta}_{\Sigma^2} \right] (d \phi)^2
\end{align*}
Where
\begin{equation*} \Delta = r^2 -2GMr+a^2 \end{equation*}
\begin{equation*} \rho^2 = r^2+a^2 \cos^2 \theta \end{equation*}
\begin{equation*}
\Sigma^2 = (r^2 + a^2)^2 - a^2 \Delta \sin^2 \theta
\end{equation*}
The Kerr metric at ##\theta = \pi /2## gets simplified to
\begin{align*}
(ds)^2 &= -\left(1-\frac{2GM}{\rho} \right)(dt)^2 - \frac{2GMa}{\rho}(dt d\phi + d\phi dt) \\ &+ \frac{r^2}{\Delta}(dr)^2 + \frac{\Sigma^2}{\rho^2} (d \phi)^2
\end{align*}
Where we used
\begin{equation*} \rho^2 = r^2 \end{equation*}
\begin{equation*}
\Sigma^2 = (r^2 + a^2)^2 - a^2 \Delta
\end{equation*}
The metric coefficients in Kerr's metric are all independent of the coordinate ##t##, which means that any time translation will leave the metric invariant. Then the vector field ##\partial / \partial t## is a (time-like) Killing-vector field i.e.
\begin{equation*}
K^{\mu} = (1,0,0,0)
\end{equation*}\begin{equation*}
K_{\mu} = g_{\mu \nu}K^{\nu}=\left( -\left(1-\frac{2GM}{\rho} \right),0,0,0\right)
\end{equation*}
The metric coefficients are all also independent of the coordinate ##\phi##. Thus
\begin{equation*}
R^{\mu} = (0,0,0,1)
\end{equation*}
\begin{equation*}
R_{\mu} = g_{\mu \nu}R^{\nu}=\left( 0,0,0, \frac{\Sigma^2}{\rho^2} \right)
\end{equation*}
Parameterizing a geodesic by an affine parameter ##\lambda## and defining a four-velocity vector ##U^{\mu}=dx^{\mu}/d \lambda := \dot x^{\mu}##, given a Killing vector ##K_{\mu}##, the have that the following quantity (along the geodesic) is conserved (Carroll Chapter 5, EQ. 5.54)
\begin{equation*}
K_{\mu}U^{\mu} = \text{constant}
\end{equation*}
Thus we get the following conserved quantities
\begin{equation*}
E= -K_{\mu}U^{\mu} = \left(1-\frac{2GM}{\rho} \right) \dot t \Rightarrow \dot t = \frac{E}{1-\frac{2GM}{\rho}}
\end{equation*}\begin{equation*}
L=R_{\mu}U^{\mu}=\frac{\Sigma^2}{\rho^2} \dot \phi \Rightarrow \dot \phi = \frac{\rho^2}{\Sigma^2} L
\end{equation*}
Where ##E## stands for the conserved energy (where we introduced a negative sign to turn ##E##'s sign positive) and ##L## for the conserved ##z-##component of the angular momentum.
The geodesic equation and the metric compatibility condition imply an extra conserved quantity (Which is given in equation ##(5.55)## in Carroll's book. Besides, the parameter ##\lambda## is chosen such that ##\epsilon=1## for massive particles and ##\epsilon=0## for massless particles. The case ##\epsilon=-1## simply corresponds to spacelike geodesics).
\begin{equation*}
\epsilon=-g_{\mu \nu}\frac{d x^{\mu}}{d \lambda}\frac{d x^{\nu}}{d \lambda}
\end{equation*}
Expanding it yields
\begin{align*}
\epsilon &= -g_{tt} \dot t^2 -g_{rr} \dot r^2 -2g_{t \phi} \dot t \dot \phi -g_{\phi \phi} \dot \phi^2 \\
&= \left(1-\frac{2GM}{\rho} \right) \dot t^2 -\frac{\rho^2}{\Delta} \dot r^2 + \frac{4GMa}{\rho}\dot t \dot \phi -\frac{\Sigma^2}{\rho^2} \dot \phi^2
\end{align*}
Plugging ##\dot t## and ##\dot \phi## into above's expression and rearranging yields
\begin{align*}
&\large \epsilon = \frac{E^2}{1-\frac{2GM}{\rho}} - \frac{\rho^2}{\Delta} \dot r^2 + \frac{4GM a \rho}{\Sigma^2 \left(1-\frac{2GM}{\rho}\right)} EL - \frac{\rho^2 L^2}{\Sigma^2} \Rightarrow\\
&\Rightarrow \dot r^2 = \frac{\Delta}{\rho^2}\left[ \frac{E^2}{1-\frac{2GM}{\rho}} + \frac{4GM a \rho}{\Sigma^2 \left(1-\frac{2GM}{\rho}\right)} EL - \frac{\rho^2 L^2}{\Sigma^2} -\epsilon \right] \Rightarrow\\
&\Rightarrow \dot r^2 = \frac{\Sigma^2}{\rho^4}\left[ \frac{\rho^2 E^2 \Delta}{\Sigma^2 \left(1-\frac{2GM}{\rho}\right)} + \frac{4GM a \rho^3 \Delta}{\Sigma^4 \left(1-\frac{2GM}{\rho}\right)} EL - \Delta \frac{\rho^4 L^2}{\Sigma^4} -\frac{\rho^2 \Delta \epsilon}{\Sigma^2} \right]
\end{align*}
So my result is (recalling that we deal with massless particles i.e. ##\epsilon =0##)
\begin{equation*}
\boxed{\dot r^2 = \frac{\Sigma^2}{\rho^4}\left[ \frac{\rho^2 E^2 \Delta}{\Sigma^2 \left(1-\frac{2GM}{\rho}\right)} + \frac{4GM a \rho^3 \Delta}{\Sigma^4 \left(1-\frac{2GM}{\rho}\right)} EL - \Delta \frac{\rho^4 L^2}{\Sigma^4} \right]}
\end{equation*}
Yikes!
So my question is: how to show that the bracketed term is equal to
\begin{equation*}
\left( E- LW_+ (r)\right)\left(E-LW_- (r)\right)
\end{equation*}
?
I appreciate your help.
I wish you a good 2021
Thank you!
PS: There is another method to get the radial geodesic of the Kerr metric and that is explicitly solving the geodesic equation for ##\mu = r##. That method is much more tedious since it implies computing (some) Christoffel symbols for the Kerr metric... which is not really enjoyable!
Yes, it's nice to see that you get back Schwarzschild for ##a## going to zero.