How to Determine Temperature Difference Between Two Stars Using Spectral Lines?

  • Thread starter Thread starter Zapped17
  • Start date Start date
  • Tags Tags
    Spectral lines
AI Thread Summary
A weak spectral line in neutral iron has been observed in solar-type stars, with its lower level having an excitation energy of 2 eV. The discussion focuses on determining the temperature difference between two stars based on the equivalent width of this spectral line, which is twice as large for star A compared to star B. The analysis assumes no hydrogen ionization, nearly all iron is singly ionized, and that the partition functions are temperature-independent. The derived equation involves the ratio of temperatures and requires solving for x, but participants express difficulty in progressing from the logarithmic form of the equation. The conversation highlights the complexities of using spectral lines to infer stellar temperatures.
Zapped17
Messages
9
Reaction score
2
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: A weak spectral line connecting levels in neutral iron has been observed for a number of solar-type stars.
Its lower level has an excitation energy of 2 eV. If the line’s equivalent width is twice as large for star A
as for star B, how great is the difference in temperature (in the layers where the line is formed) between
the two stars? Assume that no hydrogen is ionized, nearly all iron is singly ionized, H− is responsible for
all the continuous opacity, the partition functions are independent

A weak spectral line connecting levels in neutral iron has been observed for a number of solar-type stars.
Its lower level has an excitation energy of 2 eV. If the line’s equivalent width is twice as large for star A
as for star B, how great is the difference in temperature (in the layers where the line is formed) between
the two stars? Assume that no hydrogen is ionized, nearly all iron is singly ionized, H− is responsible for
all the continuous opacity, the partition functions are independent of temperature, and both stars have the
same iron abundance. The dissociation energy of H− is 0.75 eV.

Solution:
Let the temperature difference be dT = T_A - T_B.
Set x = T_A/T_B and dW_A = 2dW_B (by using both the Boltzmann equation and the Saha equation) we get (after some long derivation):
2 = x^{3/2}*e* {((2 eV)/(k*T_B))*(x-1)}.

Finally, if we take natural logarithm on both sides, we obtain:
ln(2) = (3/2)*ln(x) + (2 eV/(k*T_B))*(x-1). But from this step i am stuck what to do, how i am suppose to find x, or have I used wrong method on this exericise?
 
Last edited by a moderator:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top