How to Determine Temperature Difference Between Two Stars Using Spectral Lines?

  • Thread starter Thread starter Zapped17
  • Start date Start date
  • Tags Tags
    Spectral lines
AI Thread Summary
A weak spectral line in neutral iron has been observed in solar-type stars, with its lower level having an excitation energy of 2 eV. The discussion focuses on determining the temperature difference between two stars based on the equivalent width of this spectral line, which is twice as large for star A compared to star B. The analysis assumes no hydrogen ionization, nearly all iron is singly ionized, and that the partition functions are temperature-independent. The derived equation involves the ratio of temperatures and requires solving for x, but participants express difficulty in progressing from the logarithmic form of the equation. The conversation highlights the complexities of using spectral lines to infer stellar temperatures.
Zapped17
Messages
9
Reaction score
2
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: A weak spectral line connecting levels in neutral iron has been observed for a number of solar-type stars.
Its lower level has an excitation energy of 2 eV. If the line’s equivalent width is twice as large for star A
as for star B, how great is the difference in temperature (in the layers where the line is formed) between
the two stars? Assume that no hydrogen is ionized, nearly all iron is singly ionized, H− is responsible for
all the continuous opacity, the partition functions are independent

A weak spectral line connecting levels in neutral iron has been observed for a number of solar-type stars.
Its lower level has an excitation energy of 2 eV. If the line’s equivalent width is twice as large for star A
as for star B, how great is the difference in temperature (in the layers where the line is formed) between
the two stars? Assume that no hydrogen is ionized, nearly all iron is singly ionized, H− is responsible for
all the continuous opacity, the partition functions are independent of temperature, and both stars have the
same iron abundance. The dissociation energy of H− is 0.75 eV.

Solution:
Let the temperature difference be dT = T_A - T_B.
Set x = T_A/T_B and dW_A = 2dW_B (by using both the Boltzmann equation and the Saha equation) we get (after some long derivation):
2 = x^{3/2}*e* {((2 eV)/(k*T_B))*(x-1)}.

Finally, if we take natural logarithm on both sides, we obtain:
ln(2) = (3/2)*ln(x) + (2 eV/(k*T_B))*(x-1). But from this step i am stuck what to do, how i am suppose to find x, or have I used wrong method on this exericise?
 
Last edited by a moderator:
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top