MHB How to Evaluate This Interesting Expression?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Expression
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $1\cdot 2^2 + 1\cdot 2\cdot 3^2 + 1\cdot 2\cdot 3\cdot 4^2 +\cdots+ 1\cdot 2\cdot 3\cdots 2015^2− (1\cdot 2\cdot 3\cdots 2016)$.
 
Mathematics news on Phys.org
My solution:

First, let's prove by induction the following hypothesis $P_n$:

$$\sum_{k=a}^n(k\cdot k!)=(n+1)!-a!$$

1.) The base case $P_a$:

$$\sum_{k=a}^n(k\cdot k!)=a\cdot a!=a!((a+1)-1)=(a+1)!-a!$$

The base case is true.

2.) The induction step:

$$\sum_{k=a}^n(k\cdot k!)=(n+1)!-a!$$

Add through by $$(n+1)(n+1)!$$:

$$\sum_{k=a}^n(k\cdot k!)+(n+1)(n+1)!=(n+1)!-a!+(n+1)(n+1)!$$

$$\sum_{k=a}^{n+1}(k\cdot k!)=(n+1)!((n+1)+1)-a!$$

$$\sum_{k=a}^{n+1}(k\cdot k!)=((n+1)+1)!-a!$$

We have derived $P_{n+1}$ from $P_n$ thereby completing the proof by induction.

And so we may now state:

$$S=\sum_{k=2}^{2015}(k\cdot k!)-2016!=(2015+1)!-2!-2016!=-2$$
 
MarkFL said:
My solution:

First, let's prove by induction the following hypothesis $P_n$:

$$\sum_{k=a}^n(k\cdot k!)=(n+1)!-a!$$

1.) The base case $P_a$:

$$\sum_{k=a}^n(k\cdot k!)=a\cdot a!=a!((a+1)-1)=(a+1)!-a!$$

The base case is true.

2.) The induction step:

$$\sum_{k=a}^n(k\cdot k!)=(n+1)!-a!$$

Add through by $$(n+1)(n+1)!$$:

$$\sum_{k=a}^n(k\cdot k!)+(n+1)(n+1)!=(n+1)!-a!+(n+1)(n+1)!$$

$$\sum_{k=a}^{n+1}(k\cdot k!)=(n+1)!((n+1)+1)-a!$$

$$\sum_{k=a}^{n+1}(k\cdot k!)=((n+1)+1)!-a!$$

We have derived $P_{n+1}$ from $P_n$ thereby completing the proof by induction.

And so we may now state:

$$S=\sum_{k=2}^{2015}(k\cdot k!)-2016!=(2015+1)!-2!-2016!=-2$$

Very well done MarkFL!(Cool)
 
1st let us evaluate the sum

1st we see that $n^{th}$ term = $n * n! = (n+1-1) * n!= (n+1)! - n!$

when we sum the above from 2 to 2015 we get as a telescopic sum 2016!- 2 !
subtracting the last value that is 2016! we are left with -2! or - 2
 
Thanks for participating, kaliprasad!

For your information, that is exactly how I approached this particular problem as well! (Cool)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
3
Views
875
Replies
3
Views
965
Replies
1
Views
1K
Replies
7
Views
2K
Replies
6
Views
141
Back
Top