How to express vector in sigma notation

Click For Summary
A vector A can be expressed in sigma notation as ∑ Ai, where i ranges from 1 to 3, representing the x, y, and z coordinates. To express vector A in polar form using sigma notation, basis vectors er, eθ, and eφ are used. Each of these basis vectors corresponds to a direction in polar coordinates, with r having a length dimension, while θ and φ are angles. The components of the vector in these directions are denoted as a, b, and c, which are independent of the polar coordinates. Understanding these components and their relationships is essential for proper vector representation in polar form.
reckon
Messages
9
Reaction score
0
A vector A, can be expressed in sigma notation as
\sum Ai where i runs from 1 to 3, i.e. A1 for x coordinate, A2 for y coordinate and A3 for z coordinate.

I wonder how to express vector A in polar form using sigma notation. Could anyone share their knowledge to me?
 
Mathematics news on Phys.org
Welcome to PF!

Hi reckon ! Welcome to PF! :smile:

(have a sigma: ∑ :wink:)
reckon said:
A vector A, can be expressed in sigma notation as
\sum Ai where i runs from 1 to 3, i.e. A1 for x coordinate, A2 for y coordinate and A3 for z coordinate.

No, it's ∑ Aiei, where the {ei} are basis vectors.
I wonder how to express vector A in polar form using sigma notation. Could anyone share their knowledge to me?

You'd need to use the basis vectors er eθ and eφ.

But these are different at each point, and at the origin they aren't even defined.
 
Hahaha.. thanks tiny-tim for ∑ and you even provided with "for copying-pasting" in your signature.

But I'm still a bit unsure because for eθ eφ, we only have angle which doesn't have dimension, isn't it? Can we make them as component of a vector?

A=rer + θeθ + φeφ
where r have length dimension while θ and φ have no dimension?
 
Hi reckon! :smile:
reckon said:
But I'm still a bit unsure because for eθ eφ, we only have angle which doesn't have dimension, isn't it? Can we make them as component of a vector?

A=rer + θeθ + φeφ
where r have length dimension while θ and φ have no dimension?

ah … you obviously haven't come across these before …

no, er eθ and eφ are all unit vectors (with magnitude one), in the directions of increasing r, increasing θ, and increasing φ, respectively …

so they all have length dimension.

(it is traditional to use the symbol e for unit vectors)

A vector starting at the position (r,θ,φ) will be written as aer + beθ + ceφ, and a b and c have nothing to do with (r,θ,φ), they are simply the components of the vector in each of the three (perpendicular) directions. :smile:

(this would be easier to follow with a diagram, but unfortunately, I can't find a good one, in wikipedia or anywhere else :redface:)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K