- 69

- 0

$$ \frac{d \bar h}{dt} + \frac{K}{S_s} \alpha^2 \bar h = -\frac{K}{S_s} \alpha H h_b(t) $$

I have solved it with integrating factor method with ## I=\exp^{\int \frac{1}{D} \alpha^2 dt} ## as integrating factor and ##\frac{K}{S_s} = \frac{1}{D} ##

I have tried to solve it with following steps

$$

I \frac{d \bar h}{dt} + I \frac{1}{D} \alpha^2 \bar h = -I \frac{1}{D} \alpha H h_b(t)

\\

I \frac{d \bar h}{dt} + I \frac{1}{D} \alpha^2 \bar h= -I \frac{1}{D} \alpha H h_b(t)

\\

\frac{d \bar h}{dt} \exp^{\frac{1}{D} \alpha^2 dt} + \frac{1}{D} \alpha^2 \bar h \exp^{\int \frac{1}{D} \alpha^2 dt} = - \frac{1}{D} \alpha H h_b(t) \exp^{\int \frac{1}{D} \alpha^2 dt}

\\

\frac{d \bar h}{dt} \exp^{\int \frac{1}{D} \alpha^2 dt} = - \frac{1}{D} \alpha H h_b(t) \exp^{\int \frac{1}{D} \alpha^2 dt}

\\

\int_0^t \frac{d \bar h}{dt} \exp^{\int \frac{1}{D} \alpha^2 dt} = \int_0^t - \frac{1}{D} \alpha H h_b(t) \exp^{\int \frac{1}{D} \alpha^2 dt} dt

\\

\bar h I = - \frac{1}{D} \alpha H \int_0^t h_b(t) \exp^{\int \frac{1}{D} \alpha^2 dt} dt

\\

\bar h = - \frac{1}{D} \alpha H \int_0^t h_b(t) \exp^{\int \frac{1}{D} \alpha^2 d \tau} \exp^{- \int \frac{1}{D} \alpha^2 dt} dt

\\

\bar h = - \frac{1}{D} \alpha H \int_0^t h_b(t) \exp^{\int \frac{1}{D} \alpha^2 d \tau - \int \frac{1}{D} \alpha^2 dt} dt

\\

\bar h = - \frac{1}{D} \alpha H \int_0^t h_b(t) \exp^{\frac{1}{D} \alpha^2 \int d \tau - \int dt} dt

\\

\bar h = - \frac{1}{D} \alpha H \int_0^t h_b(t) \exp^{\frac{1}{D} \alpha^2 ( \tau - t)} dt\\

$$

Can someone please review whether I have solved it correctly or not?