MHB How to Find the Length of the Hypotenuse of a Right Triangle?

AI Thread Summary
To find the length of the hypotenuse AC in a right triangle with given dimensions, the Law of Sines can be applied, but it requires two equations due to the presence of two variables. The angles involved include a 45-degree angle at CAD and a complementary angle at CDA. A graphical representation using TikZ was created to illustrate the problem, showing the relationships between points A, B, C, and D. While a solution was proposed, participants noted that it may be inefficient, and a more elegant method is sought. The discussion emphasizes the need for clarity in problem-solving approaches in geometry.
DrLiangMath
Messages
21
Reaction score
0
AB=3, DC=5, CAD=$45^o$, AB ⊥ BC. Find the length of AC.

TN-triangle.png
 
Mathematics news on Phys.org
MathTutoringByDrLiang said:
AB=3, DC=5, CAD=$45^o$, AB ⊥ BC. Find the length of AC.

View attachment 11867
It's inefficient but start by defining angle BCA to be C. Then angle CDA = 135 - C. Call x = AC. Then by Law of Sines
[math]\dfrac{sin(90)}{x} = \dfrac{sin(45)}{5}[/math]

[math]\dfrac{sin(135 - C)}{x} = \dfrac{sin(45)}{5}[/math]

This gives a biquadratic in x. But, as I said, it's inefficient. There is probably a better approach.

-Dan
 
Thank you for your response. But we still need one more equation since we have 2 variables x and C.
 
MathTutoringByDrLiang said:
Thank you for your response. But we still need one more equation since we have 2 variables x and C.
I gave two equations. The first is the Law of Sines in triangle ABC and the second is the Law of Sines in triangle ADC. Perhaps I should have stated that.

-Dan
 
Hey MathTutoringByDrLiang,

Are you actually looking for an answer to this problem? Or do you have an elegant answer to share?
If the latter, then we might move this thread to the https://mathhelpboards.com/forums/challenge-questions-and-puzzles.28/ subforum.

Btw, at this time I could provide an answer, but it's rather long winded and I'm still looking for a more elegant solution.
 
Here's the best I could find.
\begin{tikzpicture}
%preamble \usetikzlibrary {angles,quotes}
\coordinate[label=left:A] (A) at (0,3);
\coordinate[label=left:B] (B) at (0,0);
\coordinate[label=right:C] (C) at (6,0);
\coordinate[label=below: D] (D) at (1,0);
\draw (B) rectangle +(0.2,0.2);
\draw[thick] (A) -- (B) -- (C) -- cycle (A) -- (D);
\path (A) -- node[ left ] {3} (B) -- node[below] {$y$} (D) -- node[below] {5} (C) -- node[above right] {$x$} (A);
\pic ["$45^\circ$", draw, angle radius=0.4cm, angle eccentricity=2.2,pic text options={shift={(0.1,0)}}] {angle = D--A--C};
\pic ["$135^\circ-C$", draw, angle radius=0.3cm, angle eccentricity=2.2,pic text options={shift={(0.5,0)}}] {angle = C--D--A};
\end{tikzpicture}
Let $x=AC$, which is what we want to find.
Let $y=BD$.

From the law of sines we have:
$$\frac 5{\sin 45}=\frac x{\sin(135-C)}
\implies x=5\cdot\frac{\sin(135-C)}{\sin 45}=5\cdot\frac{\sin 135\cos C -\cos 135\sin C}{\sin 45}=5\cdot\frac{\sin 45\cos C +\cos 45\sin C}{\sin 45}=5(\cos C+\sin C) \tag 1$$
From the definitions of cosine and sine:
$$\cos C=\frac{BD+5}{x}=\frac{y+5}{x} \tag 2$$
$$\sin C=\frac 3{x} \tag 3$$
From Pythagoras:
$$x^2 = (y + 5)^2 + 3^2 \tag 4$$

Substitute (2) and (3) into (1) to find:
$$x=5\left(\frac{y+5}x+\frac 3x\right) \implies x^2=5(y+8)\tag 5$$
Substitute in (4):
$$5(y+8) = (y + 5)^2 + 3^2 \implies y^2+5y-6= (y-1)(y+6) = 0 \implies y =1 \tag 6$$
Substitute back into (5):
$$x^2=5(1+8)=45 \implies x=3\sqrt 5$$
which is the answer.
 
Last edited:
Klaas van Aarsen said:
Hey MathTutoringByDrLiang,

Are you actually looking for an answer to this problem? Or do you have an elegant answer to share?
If the latter, then we might move this thread to the https://mathhelpboards.com/forums/challenge-questions-and-puzzles.28/ subforum.

Btw, at this time I could provide an answer, but it's rather long winded and I'm still looking for a more elegant solution.

I do have a solution to share. Different form the solution given by Klaas van Aarsen, my solution is based on creating new triangles. If you don't mind, I would like post it here for your reference:
 
Just for fun, I've created a TikZ diagram that corresponds to your video.
TikZ is natively supported on this site similar to formulas. Click on the picture to see the $\LaTeX$ code.
\begin{tikzpicture}[scale=2]
%preamble \usepackage{tkz-euclide}
\tkzDefPoint(0,3){A}
\tkzDefPoint(0,0){B}
\tkzDefPoint(6,0){C}
\tkzDefPoint(1,0){D}

\tkzDrawSegments[ultra thick](A,B B,C C,A A,D)

\tkzDefPointWith[orthogonal,K=-1](D,A)
\tkzGetPoint{E}
\tkzDefPointBy[projection=onto B--C](E)
\tkzGetPoint{F}
\tkzDrawSegments[help lines](D,E E,F)

\tkzLabelPoints[ left ](A,B)
\tkzLabelPoints[ right ](C)
\tkzLabelPoints[ below ](D)
\tkzLabelPoints[ below,help lines ](F)
\tkzLabelPoints[ above right,help lines ](E)
\tkzLabelSegment(B,A){3}
\tkzLabelSegment(C,D){5}
\tkzLabelSegment(D,B){$x$}
\tkzLabelSegment[help lines](E,F){$x$}
\tkzLabelSegment[help lines](D,F){3}
\tkzLabelSegment[help lines](F,C){2}

\tkzLabelAngles[pos=1](D,A,C){$45^\circ$}
\tkzMarkRightAngles(A,B,C)
\tkzMarkAngles[size=0.7,mark=none](D,A,C)

\tkzLabelAngles[pos=1,help lines](A,E,D){$45^\circ$}
\tkzMarkAngles[size=0.7,mark=none,help lines](A,E,D)
\tkzMarkAngles[size=0.6,mark=||,help lines](B,A,D F,D,E)
\tkzMarkRightAngles[help lines](A,D,E E,F,D)
\tkzMarkSegments[mark=|,help lines](A,D D,E)
\end{tikzpicture}
 
Wow, it looks so nice! Thank you!
 

Similar threads

Back
Top