MHB How to Find the Product of Cyclic Groups in an Abelian Group?

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $M$ be the abelian group, i.e., a $\mathbb{Z}$-module, $M=\mathbb{Z}_{24}\times\mathbb{Z}_{15}\times\mathbb{Z}_{50}$.

I want to find for the ideal $I=2\mathbb{Z}$ of $\mathbb{Z}$ the $\{m\in M\mid am=0, \forall a\in I\}$ as a product of cyclic groups.

We have the following:

$$\text{Ann}_M(I)=\{m\in M\mid am=0, \forall a\in I\} \\ =\{m\in \mathbb{Z}_{24}\mid am=0, \forall a\in I\}\times\{m\in \mathbb{Z}_{15}\mid am=0, \forall a\in I\}\times\{m\in \mathbb{Z}_{50}\mid am=0, \forall a\in I\}\\ =\text{Ann}_{\mathbb{Z}_{24}}(I)\times\text{Ann}_{\mathbb{Z}_{15}}(I)\times\text{Ann}_{\mathbb{Z}_{50}}(I)$$

or not? (Wondering)
 
Physics news on Phys.org
It looks good so far. :D
 
Euge said:
It looks good so far. :D

How could we continue? Do we have to show that $\text{Ann}_{\mathbb{Z}_{24}}(I), \text{Ann}_{\mathbb{Z}_{15}}(I), \text{Ann}_{\mathbb{Z}_{50}}(I)$ are cyclic groups? (Wondering)
 
They are cyclic, but based on your prompt I thought you have to compute them. I'll start with $\operatorname{Ann}_{\Bbb Z_{24}}(I)$. Since $2$ is a generator of $I$, an element $m\in \Bbb Z_{24}$ satisfies $am = 0$ if and only if $2m = 0$. The solutions of $2m = 0$ in $\Bbb Z_{24}$ are $[0]_{24}$ and $[12]_{24}$. Thus $\operatorname{Ann}_{\Bbb Z_{24}}(I) = 12\Bbb Z_{24}$.
 
Euge said:
They are cyclic, but based on your prompt I thought you have to compute them. I'll start with $\operatorname{Ann}_{\Bbb Z_{24}}(I)$. Since $2$ is a generator of $I$, an element $m\in \Bbb Z_{24}$ satisfies $am = 0$ if and only if $2m = 0$. The solutions of $2m = 0$ in $\Bbb Z_{24}$ are $[0]_{24}$ and $[12]_{24}$. Thus $\operatorname{Ann}_{\Bbb Z_{24}}(I) = 12\Bbb Z_{24}$.

Ah ok...I see... (Thinking)

So, we have also the following:

Since $2$ is a generator of $I$, an element $m\in \Bbb Z_{15}$ satisfies $am = 0$ if and only if $2m = 0$. The solution of $2m = 0$ in $\Bbb Z_{15}$ is $[0]_{15}$. Thus $\operatorname{Ann}_{\Bbb Z_{15}}(I) = 15\Bbb Z_{15}$.

Since $2$ is a generator of $I$, an element $m\in \Bbb Z_{50}$ satisfies $am = 0$ if and only if $2m = 0$. The solutions of $2m = 0$ in $\Bbb Z_{50}$ are $[0]_{50}$ and $[25]_{50}$. Thus $\operatorname{Ann}_{\Bbb Z_{50}}(I) = 25\Bbb Z_{50}$.

Is this correct? (Wondering)
 
Yes, it's correct.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top