How to Find the Product of Cyclic Groups in an Abelian Group?

Click For Summary
SUMMARY

The discussion focuses on finding the annihilator of the ideal \( I = 2\mathbb{Z} \) in the abelian group \( M = \mathbb{Z}_{24} \times \mathbb{Z}_{15} \times \mathbb{Z}_{50} \). The annihilator is expressed as \( \text{Ann}_M(I) = \text{Ann}_{\mathbb{Z}_{24}}(I) \times \text{Ann}_{\mathbb{Z}_{15}}(I) \times \text{Ann}_{\mathbb{Z}_{50}}(I) \). The calculations reveal that \( \text{Ann}_{\mathbb{Z}_{24}}(I) = 12\mathbb{Z}_{24} \), \( \text{Ann}_{\mathbb{Z}_{15}}(I) = 15\mathbb{Z}_{15} \), and \( \text{Ann}_{\mathbb{Z}_{50}}(I) = 25\mathbb{Z}_{50} \), confirming that these are indeed cyclic groups.

PREREQUISITES
  • Understanding of abelian groups and their structure
  • Familiarity with ideals in ring theory
  • Knowledge of cyclic groups and their properties
  • Basic operations in modular arithmetic
NEXT STEPS
  • Study the properties of annihilators in module theory
  • Explore the structure theorem for finitely generated abelian groups
  • Learn about the computation of annihilators in different rings
  • Investigate applications of cyclic groups in algebraic structures
USEFUL FOR

Mathematicians, algebra students, and anyone studying group theory or module theory will benefit from this discussion, particularly those interested in the properties of abelian groups and cyclic groups.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $M$ be the abelian group, i.e., a $\mathbb{Z}$-module, $M=\mathbb{Z}_{24}\times\mathbb{Z}_{15}\times\mathbb{Z}_{50}$.

I want to find for the ideal $I=2\mathbb{Z}$ of $\mathbb{Z}$ the $\{m\in M\mid am=0, \forall a\in I\}$ as a product of cyclic groups.

We have the following:

$$\text{Ann}_M(I)=\{m\in M\mid am=0, \forall a\in I\} \\ =\{m\in \mathbb{Z}_{24}\mid am=0, \forall a\in I\}\times\{m\in \mathbb{Z}_{15}\mid am=0, \forall a\in I\}\times\{m\in \mathbb{Z}_{50}\mid am=0, \forall a\in I\}\\ =\text{Ann}_{\mathbb{Z}_{24}}(I)\times\text{Ann}_{\mathbb{Z}_{15}}(I)\times\text{Ann}_{\mathbb{Z}_{50}}(I)$$

or not? (Wondering)
 
Physics news on Phys.org
It looks good so far. :D
 
Euge said:
It looks good so far. :D

How could we continue? Do we have to show that $\text{Ann}_{\mathbb{Z}_{24}}(I), \text{Ann}_{\mathbb{Z}_{15}}(I), \text{Ann}_{\mathbb{Z}_{50}}(I)$ are cyclic groups? (Wondering)
 
They are cyclic, but based on your prompt I thought you have to compute them. I'll start with $\operatorname{Ann}_{\Bbb Z_{24}}(I)$. Since $2$ is a generator of $I$, an element $m\in \Bbb Z_{24}$ satisfies $am = 0$ if and only if $2m = 0$. The solutions of $2m = 0$ in $\Bbb Z_{24}$ are $[0]_{24}$ and $[12]_{24}$. Thus $\operatorname{Ann}_{\Bbb Z_{24}}(I) = 12\Bbb Z_{24}$.
 
Euge said:
They are cyclic, but based on your prompt I thought you have to compute them. I'll start with $\operatorname{Ann}_{\Bbb Z_{24}}(I)$. Since $2$ is a generator of $I$, an element $m\in \Bbb Z_{24}$ satisfies $am = 0$ if and only if $2m = 0$. The solutions of $2m = 0$ in $\Bbb Z_{24}$ are $[0]_{24}$ and $[12]_{24}$. Thus $\operatorname{Ann}_{\Bbb Z_{24}}(I) = 12\Bbb Z_{24}$.

Ah ok...I see... (Thinking)

So, we have also the following:

Since $2$ is a generator of $I$, an element $m\in \Bbb Z_{15}$ satisfies $am = 0$ if and only if $2m = 0$. The solution of $2m = 0$ in $\Bbb Z_{15}$ is $[0]_{15}$. Thus $\operatorname{Ann}_{\Bbb Z_{15}}(I) = 15\Bbb Z_{15}$.

Since $2$ is a generator of $I$, an element $m\in \Bbb Z_{50}$ satisfies $am = 0$ if and only if $2m = 0$. The solutions of $2m = 0$ in $\Bbb Z_{50}$ are $[0]_{50}$ and $[25]_{50}$. Thus $\operatorname{Ann}_{\Bbb Z_{50}}(I) = 25\Bbb Z_{50}$.

Is this correct? (Wondering)
 
Yes, it's correct.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 26 ·
Replies
26
Views
948
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
2K
  • · Replies 23 ·
Replies
23
Views
3K