I How to get the energy eigenvalue of the Hamiltonian: H0+λp/m ?

Click For Summary
The discussion centers on how the energy eigenvalue changes when adding a term λp/m to the Hamiltonian H0. It is suggested that by applying the momentum operator p to a new eigenstate, the resulting state retains the same energy eigenvalue, while applying p^2 results in a different energy due to additional momentum-related terms. This phenomenon is linked to quantum tunneling, where particles can overcome energy barriers. The conversation also touches on establishing a linear dispersion relation that incorporates momentum terms, which may be relevant for semiconductor physics. Understanding these concepts is crucial for grasping the implications of modifying Hamiltonians in quantum mechanics.
Jiangwei Du
Messages
2
Reaction score
0
TL;DR
We have already know the energy eigenvalue E0 of initial Hamiltonian H0. So when we add the extra item-λp/m, how the energy eigenvalue will vary?
Someone says we can choose the new eigenstate: exp(-iλx/hbar)*ψ,and let the momentum operator p acts upon this new state. At the same time, so does p^2. Something miraculous will happen afterwards. My question is: how to image this point? Thank you very much.
 
Physics news on Phys.org
The idea here is that when the momentum operator p is applied to an eigenstate, it will produce a state with the same energy (eigenvalue) as before. However, when the momentum operator squared, p^2, is applied to this same eigenstate, the result will be a state with a different energy. This is because the momentum operator squared contains additional terms corresponding to higher powers of momentum, which require higher energies to produce states with the same eigenvalue. This is an example of what is known as "quantum tunneling", where particles can pass through "barriers" of energy which would normally be too high to be overcome. In this case, the particle is able to "tunnel" through the barrier by utilizing the energy associated with its momentum.
 
  • Like
Likes Jiangwei Du
azntoon said:
The idea here is that when the momentum operator p is applied to an eigenstate, it will produce a state with the same energy (eigenvalue) as before. However, when the momentum operator squared, p^2, is applied to this same eigenstate, the result will be a state with a different energy. This is because the momentum operator squared contains additional terms corresponding to higher powers of momentum, which require higher energies to produce states with the same eigenvalue. This is an example of what is known as "quantum tunneling", where particles can pass through "barriers" of energy which would normally be too high to be overcome. In this case, the particle is able to "tunnel" through the barrier by utilizing the energy associated with its momentum.
Sorry, I can't understand your statement. Maybe you have strayed from the point.
 
Jiangwei Du said:
Someone says
Where? Please give a reference.
 
You can try to complete the square.
 
Jiangwei Du said:
TL;DR Summary: We have already know the energy eigenvalue E0 of initial Hamiltonian H0. So when we add the extra item-λp/m, how the energy eigenvalue will vary?

Someone says we can choose the new eigenstate: exp(-iλx/hbar)*ψ,and let the momentum operator p acts upon this new state. At the same time, so does p^2. Something miraculous will happen afterwards. My question is: how to image this point? Thank you very much.
You can establish a linear dispersion relation with a term like ##v \mathbf{\sigma} \cdot \mathbf{p}## and you can add it your p^2 term to get some generalised k.p approximation useful for some semiconductors/semimentals. Is this what is motivating your question?
 
Last edited:
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
9
Views
1K
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
75
Views
5K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
4
Views
2K