I How to get the energy eigenvalue of the Hamiltonian: H0+λp/m ?

Jiangwei Du
Messages
2
Reaction score
0
TL;DR Summary
We have already know the energy eigenvalue E0 of initial Hamiltonian H0. So when we add the extra item-λp/m, how the energy eigenvalue will vary?
Someone says we can choose the new eigenstate: exp(-iλx/hbar)*ψ,and let the momentum operator p acts upon this new state. At the same time, so does p^2. Something miraculous will happen afterwards. My question is: how to image this point? Thank you very much.
 
Physics news on Phys.org
The idea here is that when the momentum operator p is applied to an eigenstate, it will produce a state with the same energy (eigenvalue) as before. However, when the momentum operator squared, p^2, is applied to this same eigenstate, the result will be a state with a different energy. This is because the momentum operator squared contains additional terms corresponding to higher powers of momentum, which require higher energies to produce states with the same eigenvalue. This is an example of what is known as "quantum tunneling", where particles can pass through "barriers" of energy which would normally be too high to be overcome. In this case, the particle is able to "tunnel" through the barrier by utilizing the energy associated with its momentum.
 
  • Like
Likes Jiangwei Du
azntoon said:
The idea here is that when the momentum operator p is applied to an eigenstate, it will produce a state with the same energy (eigenvalue) as before. However, when the momentum operator squared, p^2, is applied to this same eigenstate, the result will be a state with a different energy. This is because the momentum operator squared contains additional terms corresponding to higher powers of momentum, which require higher energies to produce states with the same eigenvalue. This is an example of what is known as "quantum tunneling", where particles can pass through "barriers" of energy which would normally be too high to be overcome. In this case, the particle is able to "tunnel" through the barrier by utilizing the energy associated with its momentum.
Sorry, I can't understand your statement. Maybe you have strayed from the point.
 
Jiangwei Du said:
Someone says
Where? Please give a reference.
 
You can try to complete the square.
 
Jiangwei Du said:
TL;DR Summary: We have already know the energy eigenvalue E0 of initial Hamiltonian H0. So when we add the extra item-λp/m, how the energy eigenvalue will vary?

Someone says we can choose the new eigenstate: exp(-iλx/hbar)*ψ,and let the momentum operator p acts upon this new state. At the same time, so does p^2. Something miraculous will happen afterwards. My question is: how to image this point? Thank you very much.
You can establish a linear dispersion relation with a term like ##v \mathbf{\sigma} \cdot \mathbf{p}## and you can add it your p^2 term to get some generalised k.p approximation useful for some semiconductors/semimentals. Is this what is motivating your question?
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top