I How to get the energy eigenvalue of the Hamiltonian: H0+λp/m ?

Jiangwei Du
Messages
2
Reaction score
0
TL;DR Summary
We have already know the energy eigenvalue E0 of initial Hamiltonian H0. So when we add the extra item-λp/m, how the energy eigenvalue will vary?
Someone says we can choose the new eigenstate: exp(-iλx/hbar)*ψ,and let the momentum operator p acts upon this new state. At the same time, so does p^2. Something miraculous will happen afterwards. My question is: how to image this point? Thank you very much.
 
Physics news on Phys.org
The idea here is that when the momentum operator p is applied to an eigenstate, it will produce a state with the same energy (eigenvalue) as before. However, when the momentum operator squared, p^2, is applied to this same eigenstate, the result will be a state with a different energy. This is because the momentum operator squared contains additional terms corresponding to higher powers of momentum, which require higher energies to produce states with the same eigenvalue. This is an example of what is known as "quantum tunneling", where particles can pass through "barriers" of energy which would normally be too high to be overcome. In this case, the particle is able to "tunnel" through the barrier by utilizing the energy associated with its momentum.
 
  • Like
Likes Jiangwei Du
azntoon said:
The idea here is that when the momentum operator p is applied to an eigenstate, it will produce a state with the same energy (eigenvalue) as before. However, when the momentum operator squared, p^2, is applied to this same eigenstate, the result will be a state with a different energy. This is because the momentum operator squared contains additional terms corresponding to higher powers of momentum, which require higher energies to produce states with the same eigenvalue. This is an example of what is known as "quantum tunneling", where particles can pass through "barriers" of energy which would normally be too high to be overcome. In this case, the particle is able to "tunnel" through the barrier by utilizing the energy associated with its momentum.
Sorry, I can't understand your statement. Maybe you have strayed from the point.
 
Jiangwei Du said:
Someone says
Where? Please give a reference.
 
You can try to complete the square.
 
Jiangwei Du said:
TL;DR Summary: We have already know the energy eigenvalue E0 of initial Hamiltonian H0. So when we add the extra item-λp/m, how the energy eigenvalue will vary?

Someone says we can choose the new eigenstate: exp(-iλx/hbar)*ψ,and let the momentum operator p acts upon this new state. At the same time, so does p^2. Something miraculous will happen afterwards. My question is: how to image this point? Thank you very much.
You can establish a linear dispersion relation with a term like ##v \mathbf{\sigma} \cdot \mathbf{p}## and you can add it your p^2 term to get some generalised k.p approximation useful for some semiconductors/semimentals. Is this what is motivating your question?
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I asked a question related to a table levitating but I am going to try to be specific about my question after one of the forum mentors stated I should make my question more specific (although I'm still not sure why one couldn't have asked if a table levitating is possible according to physics). Specifically, I am interested in knowing how much justification we have for an extreme low probability thermal fluctuation that results in a "miraculous" event compared to, say, a dice roll. Does a...
Back
Top