MHB How to Prove 0.333... < x/y < 0.5 with $x$ and $y$ Defined as Fractions?

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion focuses on proving that \( \frac{1}{3} < \frac{x}{y} < \frac{1}{2} \) where \( y = \frac{1}{10^2} + \frac{1}{11^2} + \cdots + \frac{1}{19^2} \) and \( x = \frac{1}{21^2} + \frac{1}{22^2} + \cdots + \frac{1}{40^2} \). Participants explore the inequality by demonstrating that \( 2x < y \) to establish the upper bound \( \frac{x}{y} < \frac{1}{2} \). The lower bound \( \frac{1}{3} < \frac{x}{y} \) is also addressed, with contributors sharing methods and solutions. The thread highlights collaborative problem-solving and mathematical reasoning in proving the inequalities. Overall, the discussion emphasizes the importance of rigorous proofs in fraction comparisons.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $y=\dfrac{1}{10^2}+\dfrac{1}{11^2}+\cdots+\dfrac{1}{19^2}$ and $x=\dfrac{1}{21^2}+\dfrac{1}{22^2}+\cdots+\dfrac{1}{40^2}$.

Prove that $\dfrac{1}{3}\lt \dfrac{x}{y}\lt \dfrac{1}{2}$.
 
Mathematics news on Phys.org
anemone said:
Let $y=\dfrac{1}{10^2}+\dfrac{1}{11^2}+\cdots+\dfrac{1}{19^2}$ and $x=\dfrac{1}{21^2}+\dfrac{1}{22^2}+\cdots+\dfrac{1}{40^2}$.

Prove that $\dfrac{1}{3}\lt \dfrac{x}{y}\lt \dfrac{1}{2}$.

let me prove the 2nd part that is

$\dfrac{x}{y}\lt \dfrac{1}{2}$
or $2x < y$

we have
$\dfrac{1}{n^2}=\dfrac{4}{(2n)^2} > \dfrac{2}{(2n+1) ^2} +\dfrac{2}{(2n+2) ^2}$
by taking n from 10 to 19 and adding we get the result
 
Last edited:
anemone said:
Let $y=\dfrac{1}{10^2}+\dfrac{1}{11^2}+\cdots+\dfrac{1}{19^2}$ and $x=\dfrac{1}{21^2}+\dfrac{1}{22^2}+\cdots+\dfrac{1}{40^2}$.

Prove that $\dfrac{1}{3}\lt \dfrac{x}{y}\lt \dfrac{1}{2}$.
$\dfrac{20}{861}=\dfrac {1}{21}-\dfrac{1}{41}<x<\dfrac {1}{20}-\dfrac{1}{40}=\dfrac{1}{40}\\$
$\dfrac{40}{861}<2x<\dfrac {1}{20}\\$
$\therefore \dfrac {1}{2x}>20----(A)\\$
$3x>\dfrac{60}{861}---(B)\\$
$\dfrac{1}{20}=\dfrac {1}{10}-\dfrac{1}{20}<y<\dfrac {1}{9}-\dfrac{1}{19}=\dfrac{10}{171}\\$
$\therefore y>\dfrac{1}{20}----(C)\\$
$\dfrac {1}{y}>\dfrac{171}{10}---(D)$
$(C)\times(A)>1$, and $(B)\times (D)>1$
the proof of both sides is finished
 
Last edited:
Albert said:
$\dfrac{20}{861}=\dfrac {1}{21}-\dfrac{1}{41}<x<\dfrac {1}{20}-\dfrac{1}{40}=\dfrac{1}{40}\\$

How ?
 
kaliprasad said:
How ?
$\sum (\dfrac {1}{n}-\dfrac {1}{n+1})=\sum \dfrac {1}{n(n+1)}<\sum \dfrac {1}{n^2}<\sum \dfrac {1}{(n-1)(n)}=\sum (\dfrac {1}{n-1}-\dfrac {1}{n})$
 
Thanks Albert for participating and your method is correct.

Thanks to kaliprasad as well for proving half of the problem.:)
 
My solution:

First notice that $22^2>21^2>4(10^2),\,24^2>23^2>4(11^2),\cdots,\,40^2>39^2>4(19^2)$ we get $\dfrac{1}{4(10^2)}+\dfrac{1}{4(10^2)}+\dfrac{1}{4(11^2)}+\dfrac{1}{4(11^2)}+\cdots+\dfrac{1}{4(19^2)}+\dfrac{1}{4(19^2)}>\dfrac{1}{21^2}+\dfrac{1}{22^2}+\cdots+\dfrac{1}{40^2}$, i.e. $\dfrac{1}{2}\left(y\right)>x$ or simply $y>2x$.

On the other hand, we have $6(10^2)>22^2>21^2,\,6(11^2)>24^2>23^2,\cdots,\,6(19^2)>40^2>39^2$ we get $\dfrac{1}{6(10^2)}+\dfrac{1}{6(10^2)}+\dfrac{1}{6(11^2)}+\dfrac{1}{6(11^2)}+\cdots+\dfrac{1}{6(19^2)}+\dfrac{1}{6(19^2)}<\dfrac{1}{21^2}+\dfrac{1}{22^2}+\cdots+\dfrac{1}{40^2}$, i.e. $\dfrac{1}{3}\left(y\right)<x$ or simply $y<3x$.

Combining both results we get $\dfrac{1}{3}\lt \dfrac{x}{y}\lt \dfrac{1}{2}$ and we're hence done.
 
Back
Top