How to Prove 0.333... < x/y < 0.5 with $x$ and $y$ Defined as Fractions?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on proving the inequality $\frac{1}{3} < \frac{x}{y} < \frac{1}{2}$, where $y = \frac{1}{10^2} + \frac{1}{11^2} + \cdots + \frac{1}{19^2}$ and $x = \frac{1}{21^2} + \frac{1}{22^2} + \cdots + \frac{1}{40^2}$. Participants confirm the validity of the methods used to establish that $2x < y$, thereby supporting the upper bound of the inequality. The discussion highlights contributions from users Albert and kaliprasad, who provided insights into the proof process.

PREREQUISITES
  • Understanding of infinite series and convergence
  • Familiarity with inequalities in mathematical proofs
  • Knowledge of summation notation and manipulation
  • Basic calculus concepts related to limits and bounds
NEXT STEPS
  • Study the convergence of series, particularly $\sum_{n=10}^{19} \frac{1}{n^2}$ and $\sum_{n=21}^{40} \frac{1}{n^2}$
  • Explore techniques for proving inequalities in mathematical analysis
  • Learn about the properties of harmonic series and their applications
  • Investigate advanced methods for bounding fractions in mathematical proofs
USEFUL FOR

Mathematicians, students studying calculus or real analysis, and anyone interested in understanding inequalities involving series and fractions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $y=\dfrac{1}{10^2}+\dfrac{1}{11^2}+\cdots+\dfrac{1}{19^2}$ and $x=\dfrac{1}{21^2}+\dfrac{1}{22^2}+\cdots+\dfrac{1}{40^2}$.

Prove that $\dfrac{1}{3}\lt \dfrac{x}{y}\lt \dfrac{1}{2}$.
 
Physics news on Phys.org
anemone said:
Let $y=\dfrac{1}{10^2}+\dfrac{1}{11^2}+\cdots+\dfrac{1}{19^2}$ and $x=\dfrac{1}{21^2}+\dfrac{1}{22^2}+\cdots+\dfrac{1}{40^2}$.

Prove that $\dfrac{1}{3}\lt \dfrac{x}{y}\lt \dfrac{1}{2}$.

let me prove the 2nd part that is

$\dfrac{x}{y}\lt \dfrac{1}{2}$
or $2x < y$

we have
$\dfrac{1}{n^2}=\dfrac{4}{(2n)^2} > \dfrac{2}{(2n+1) ^2} +\dfrac{2}{(2n+2) ^2}$
by taking n from 10 to 19 and adding we get the result
 
Last edited:
anemone said:
Let $y=\dfrac{1}{10^2}+\dfrac{1}{11^2}+\cdots+\dfrac{1}{19^2}$ and $x=\dfrac{1}{21^2}+\dfrac{1}{22^2}+\cdots+\dfrac{1}{40^2}$.

Prove that $\dfrac{1}{3}\lt \dfrac{x}{y}\lt \dfrac{1}{2}$.
$\dfrac{20}{861}=\dfrac {1}{21}-\dfrac{1}{41}<x<\dfrac {1}{20}-\dfrac{1}{40}=\dfrac{1}{40}\\$
$\dfrac{40}{861}<2x<\dfrac {1}{20}\\$
$\therefore \dfrac {1}{2x}>20----(A)\\$
$3x>\dfrac{60}{861}---(B)\\$
$\dfrac{1}{20}=\dfrac {1}{10}-\dfrac{1}{20}<y<\dfrac {1}{9}-\dfrac{1}{19}=\dfrac{10}{171}\\$
$\therefore y>\dfrac{1}{20}----(C)\\$
$\dfrac {1}{y}>\dfrac{171}{10}---(D)$
$(C)\times(A)>1$, and $(B)\times (D)>1$
the proof of both sides is finished
 
Last edited:
Albert said:
$\dfrac{20}{861}=\dfrac {1}{21}-\dfrac{1}{41}<x<\dfrac {1}{20}-\dfrac{1}{40}=\dfrac{1}{40}\\$

How ?
 
kaliprasad said:
How ?
$\sum (\dfrac {1}{n}-\dfrac {1}{n+1})=\sum \dfrac {1}{n(n+1)}<\sum \dfrac {1}{n^2}<\sum \dfrac {1}{(n-1)(n)}=\sum (\dfrac {1}{n-1}-\dfrac {1}{n})$
 
Thanks Albert for participating and your method is correct.

Thanks to kaliprasad as well for proving half of the problem.:)
 
My solution:

First notice that $22^2>21^2>4(10^2),\,24^2>23^2>4(11^2),\cdots,\,40^2>39^2>4(19^2)$ we get $\dfrac{1}{4(10^2)}+\dfrac{1}{4(10^2)}+\dfrac{1}{4(11^2)}+\dfrac{1}{4(11^2)}+\cdots+\dfrac{1}{4(19^2)}+\dfrac{1}{4(19^2)}>\dfrac{1}{21^2}+\dfrac{1}{22^2}+\cdots+\dfrac{1}{40^2}$, i.e. $\dfrac{1}{2}\left(y\right)>x$ or simply $y>2x$.

On the other hand, we have $6(10^2)>22^2>21^2,\,6(11^2)>24^2>23^2,\cdots,\,6(19^2)>40^2>39^2$ we get $\dfrac{1}{6(10^2)}+\dfrac{1}{6(10^2)}+\dfrac{1}{6(11^2)}+\dfrac{1}{6(11^2)}+\cdots+\dfrac{1}{6(19^2)}+\dfrac{1}{6(19^2)}<\dfrac{1}{21^2}+\dfrac{1}{22^2}+\cdots+\dfrac{1}{40^2}$, i.e. $\dfrac{1}{3}\left(y\right)<x$ or simply $y<3x$.

Combining both results we get $\dfrac{1}{3}\lt \dfrac{x}{y}\lt \dfrac{1}{2}$ and we're hence done.
 

Similar threads

Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K