MHB How to Prove 10m+n mod 11=0 for Natural Numbers m and n?

  • Thread starter Thread starter Albert1
  • Start date Start date
Albert1
Messages
1,221
Reaction score
0
$m,n\in N$ and $\dfrac {m^2+n^2}{m\times n}\in N$
prove :$(10m+n)$ mod $11=0$
 
Mathematics news on Phys.org
Given $m\in N\text{ and }n\in N$, if ${m^2+n^2\over mn}\in N$, then m=n:
If $m\neq n$, then I can assume $m$ and $n$ are relatively prime. But then $m$ divides $n^2$, which is impossible.
So $$n\equiv m\pmod{11}$$
$$-m+n\equiv 0\pmod{11}$$
$$10m+n\equiv 0\pmod{11}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top