Given $m\in N\text{ and }n\in N$, if ${m^2+n^2\over mn}\in N$, then m=n:
If $m\neq n$, then I can assume $m$ and $n$ are relatively prime. But then $m$ divides $n^2$, which is impossible.
So $$n\equiv m\pmod{11}$$
$$-m+n\equiv 0\pmod{11}$$
$$10m+n\equiv 0\pmod{11}$$