How to Prove 10m+n mod 11=0 for Natural Numbers m and n?

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
Albert1
Messages
1,221
Reaction score
0
$m,n\in N$ and $\dfrac {m^2+n^2}{m\times n}\in N$
prove :$(10m+n)$ mod $11=0$
 
Mathematics news on Phys.org
Given $m\in N\text{ and }n\in N$, if ${m^2+n^2\over mn}\in N$, then m=n:
If $m\neq n$, then I can assume $m$ and $n$ are relatively prime. But then $m$ divides $n^2$, which is impossible.
So $$n\equiv m\pmod{11}$$
$$-m+n\equiv 0\pmod{11}$$
$$10m+n\equiv 0\pmod{11}$$
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
988
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K