MHB How to prove an ideal of a ring R which is defined as a coordinates

  • Thread starter Thread starter cbarker1
  • Start date Start date
  • Tags Tags
    Coordinates Ring
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Hi Everyone,

I am wondering how to prove an ideal of a ring $R$ which is defined as a coordinates. Let $R$ be the ring of $\mathbb{Z} \times \mathbb{Z}$. Let $I={(a,a)| a\in \mathbb{Z}}$. I determine that the $I$ is a subring of $R$. Next step is to show the multiplication between the elements of $R$ and $I$. But I have read in the book that I need worried about the elements of $R$ and not just $I$. Thanks,
Cbarker1
 
Physics news on Phys.org
Hi Cbarker1,

Assuming that multiplication in $R$ is defined as $(a_{1},a_{2})\cdot (b_{1},b_{2}) = (a_{1}b_{1},a_{2}b_{2}),$ $I$ is not an ideal of $R$. For example $(1,0)\cdot(a,a) = (a,0)\notin I$ for any $a\neq 0$.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
805
Replies
21
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
883
  • · Replies 3 ·
Replies
3
Views
742
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K