MHB How to Prove Certain Properties of Homomorphisms and Ideals in Ring Theory?

  • Thread starter Thread starter Krizalid1
  • Start date Start date
  • Tags Tags
    Homomorphisms
Click For Summary
To prove that $\phi^{-1}(J)$ is an ideal of $R$, it is shown that for any $a \in \phi^{-1}(J)$ and $r \in R$, the product $ra$ remains in $\phi^{-1}(J)$ due to the properties of ideals. Additionally, it is established that the kernel of the homomorphism $\phi$, $\ker(\phi)$, is a subset of $\phi^{-1}(J)$ since the image of the kernel under $\phi$ is zero, which is contained in any ideal $J$. However, $\phi(I)$ is not necessarily an ideal of $S$, illustrated by the example of the homomorphism $\phi(x) = diag(x,x)$, which does not satisfy the ideal properties in the codomain. The discussion emphasizes the importance of understanding the relationships between homomorphisms, ideals, and their inverses in ring theory. Overall, these properties are crucial for analyzing the structure of rings and their homomorphic images.
Krizalid1
Messages
106
Reaction score
0
Let $\phi:R\to S$ be a homomorphism of rings. Let $I$ be an ideal of $R$ and $J$ be an ideal of $S.$ Prove that $\phi^{-1}(J)$ is an ideal of $R$ and $\ker(\phi)\subset\phi^{-1}(J).$ Also prove that $\phi(I)$ is not necessarily an ideal of $S.$
 
Mathematics news on Phys.org
Krizalid said:
Let $\phi:R\to S$ be a homomorphism of rings. Let $I$ be an ideal of $R$ and $J$ be an ideal of $S.$ Prove that $\phi^{-1}(J)$ is an ideal of $R$ and $\ker(\phi)\subset\phi^{-1}(J).$ Also prove that $\phi(I)$ is not necessarily an ideal of $S.$

The second is the easiest: since $0\in J$ then $\phi (ker (\phi))=0\in J$. The third is not complicated: think of the homomorphism $\phi (x)=diag(x,x)$, where $diag(x,x)$ is the 2x2 diagonal matrix with x's on the diagonal. It can't be an ideal.

The first: Let $J^{-1}:=\phi^{-1}(J)$. If $a\in J^{-1}$ and $r\in R$. Then $\phi(ra)=\phi(r) \phi(a) \in J$, since J is an ideal. So $ra\in J^{-1}$.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 3 ·
Replies
3
Views
883
  • · Replies 13 ·
Replies
13
Views
964
  • · Replies 3 ·
Replies
3
Views
742
Replies
5
Views
949
  • · Replies 5 ·
Replies
5
Views
805
Replies
21
Views
1K
Replies
31
Views
2K
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K