MHB How to Prove Certain Properties of Homomorphisms and Ideals in Ring Theory?

  • Thread starter Thread starter Krizalid1
  • Start date Start date
  • Tags Tags
    Homomorphisms
AI Thread Summary
To prove that $\phi^{-1}(J)$ is an ideal of $R$, it is shown that for any $a \in \phi^{-1}(J)$ and $r \in R$, the product $ra$ remains in $\phi^{-1}(J)$ due to the properties of ideals. Additionally, it is established that the kernel of the homomorphism $\phi$, $\ker(\phi)$, is a subset of $\phi^{-1}(J)$ since the image of the kernel under $\phi$ is zero, which is contained in any ideal $J$. However, $\phi(I)$ is not necessarily an ideal of $S$, illustrated by the example of the homomorphism $\phi(x) = diag(x,x)$, which does not satisfy the ideal properties in the codomain. The discussion emphasizes the importance of understanding the relationships between homomorphisms, ideals, and their inverses in ring theory. Overall, these properties are crucial for analyzing the structure of rings and their homomorphic images.
Krizalid1
Messages
106
Reaction score
0
Let $\phi:R\to S$ be a homomorphism of rings. Let $I$ be an ideal of $R$ and $J$ be an ideal of $S.$ Prove that $\phi^{-1}(J)$ is an ideal of $R$ and $\ker(\phi)\subset\phi^{-1}(J).$ Also prove that $\phi(I)$ is not necessarily an ideal of $S.$
 
Mathematics news on Phys.org
Krizalid said:
Let $\phi:R\to S$ be a homomorphism of rings. Let $I$ be an ideal of $R$ and $J$ be an ideal of $S.$ Prove that $\phi^{-1}(J)$ is an ideal of $R$ and $\ker(\phi)\subset\phi^{-1}(J).$ Also prove that $\phi(I)$ is not necessarily an ideal of $S.$

The second is the easiest: since $0\in J$ then $\phi (ker (\phi))=0\in J$. The third is not complicated: think of the homomorphism $\phi (x)=diag(x,x)$, where $diag(x,x)$ is the 2x2 diagonal matrix with x's on the diagonal. It can't be an ideal.

The first: Let $J^{-1}:=\phi^{-1}(J)$. If $a\in J^{-1}$ and $r\in R$. Then $\phi(ra)=\phi(r) \phi(a) \in J$, since J is an ideal. So $ra\in J^{-1}$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top