klim
- 8
- 0
Hallo, can someone help me to proof this inequality:
$$ (\lambda-(m+1)) \cdot \frac{m!}{\lambda^{m+1}} \cdot \sum_{j=0}^m \frac{\lambda^j}{j!} (m+1-j) \leq \frac{\lambda}{\lambda-m} $$
with condition $$ m+1 < \lambda $$.
$$\lambda$$ is real und $$m$$ is integer.
$$ (\lambda-(m+1)) \cdot \frac{m!}{\lambda^{m+1}} \cdot \sum_{j=0}^m \frac{\lambda^j}{j!} (m+1-j) \leq \frac{\lambda}{\lambda-m} $$
with condition $$ m+1 < \lambda $$.
$$\lambda$$ is real und $$m$$ is integer.