MHB How to Select the Correct X-Value for Testing Inequalities?

  • Thread starter Thread starter mathdad
  • Start date Start date
mathdad
Messages
1,280
Reaction score
0
Solve the inequality.

2x - 7 < 11

2x < 11 + 7

2x < 18

x < 18/2

x < 9

Correct?
 
Mathematics news on Phys.org
It's easy to check. If x is any number less than 9 then 2x is less than 18 so that 2x- 7 is less than 11. Yes, that is correct.
 
Good to be correct.

2x - 7 < 11

The value of x must be less than 9 to make the original inequality a true statement.

Let x = 0

2(0) - 7 < 11

0 - 7 < 11

-7 < 11

This is true. So, x < 9 is correct.
 
RTCNTC said:
Good to be correct.

2x - 7 < 11

The value of x must be less than 9 to make the original inequality a true statement.

Let x = 0

2(0) - 7 < 11

0 - 7 < 11

-7 < 11

This is true. So, x < 9 is correct.
No, that is not an appropriate way to check. That shows that there exist a number, less than 9, that satisfies the equation. It does not show that every number less than 9 satisfies it.

For example, suppose you had arrived at the incorrect conclusion that the solution was x< 5. Taking x= 0, which is still less than 5, would arrive at the same result.
 
Not every number less than 9 can be used to show that the original inequality is true. How does one select the correct x-value for testing?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
6
Views
1K
Replies
1
Views
977
Replies
13
Views
2K
Replies
4
Views
1K
Replies
24
Views
2K
Replies
10
Views
2K
Replies
3
Views
1K
Replies
1
Views
1K
Back
Top