MHB How to Show Equality of Probabilities?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Probabilities
Click For Summary
The discussion revolves around demonstrating the equality of probabilities in a discrete probability space. Participants explore the relationship between events A and B, specifically focusing on the expression P(A∩B) - P(A)P(B) = P(A^c)P(B) - P(A^c∩B). They confirm that since A and A^c are disjoint, the total probability P(B) can be expressed as P(A∩B) + P(A^c∩B). The validity of specific probability values for B is also examined, concluding that P(B) cannot be 0.3 or 0.7 due to resulting negative probabilities or exceeding the total probability of 1. The conversation emphasizes the importance of understanding independence and the properties of probability measures.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

Let $(\Omega, p)$ be a discrete probability room with induced probability measure $P$ and let $A, B\subseteq \Omega$ be two events.
I want to show that $P(A\cap B)-P(A)P(B)=P(A^c)P(B)-P(A^c\cap B)$.

For that do we write to what for example $P(A^c\cap B)$ is equal to simplify the expression or which way is the best one? :unsure:

We have that $(A\cap B)\cap (A^c\cap B)=\emptyset$ and so \begin{align*}&P((A\cap B)\cup (A^c\cap B))=P(A\cap B)+P (A^c\cap B)\\ & \Rightarrow P((A\cup A^c)\cap B)=P(A\cap B)+P (A^c\cap B)\end{align*}
Now we have to show that $P((A\cup A^c)\cap B)=P(A)P(B)+P(A^c)P(B)=[P(A)+P(A^c)]P(B)$, right?
We get that result if $(A\cup A^c)$ and $B$ are independent, or not? How can we show that? :unsure:

Or is there an other (better) way to show the desired expression? :unsure:
 
Last edited by a moderator:
Physics news on Phys.org
Hey mathmari!

We have that $(A\cup A^c)=\Omega$ and $B\subseteq \Omega$.
So $(A\cup A^c)\cap B=B$. 🤔

Also note that a probability measure must have $P(\Omega)=1$.
And since $A$ and $A^c$ are disjoint, we also have $P(A\cup A^c)=P(A)+P(A^c)$. 🤔
 
Klaas van Aarsen said:
We have that $(A\cup A^c)=\Omega$ and $B\subseteq \Omega$.
So $(A\cup A^c)\cap B=B$. 🤔

Also note that a probability measure must have $P(\Omega)=1$.
And since $A$ and $A^c$ are disjoint, we also have $P(A\cup A^c)=P(A)+P(A^c)$. 🤔

So do we have the following ?

\begin{align*}&P((A\cap B)\cup (A^c\cap B))=P(A\cap B)+P (A^c\cap B) \\ & \Rightarrow P((A\cup A^c)\cap B)=P(A\cap B)+P (A^c\cap B)\\ &\Rightarrow P( B)=P(A\cap B)+P (A^c\cap B)\end{align*} and \begin{align*}P(A)P(B)+P(A^c)P(B)&=[P(A)+P(A^c)]P(B)\\ & =[P(A)+1-P(A))]P(B)\\ & =P(B)\end{align*} Combining these results we get \begin{align*}
&P(A\cap B)+P (A^c\cap B)=P(A)P(B)+P(A^c)P(B) \\ & \Rightarrow P(A\cap B)-P(A)P(B)=P(A^c)P(B)-P(A^c\cap B)\end{align*}
Is everything correct? :unsure:
 
Yep. All correct. (Nod)
 
Klaas van Aarsen said:
Yep. All correct. (Nod)

Great! (Sun)

Suppose we have that $P(A)=0.8$ and $P(A\cap B)=0.4$.

I want to check if $P(B)=0.3$ and $P(B)=0.7$ is possible.

For $P(B)=0.3$ : We substitute at the above proven equality and since we get then $P(A^c\cap B)=-0.1$ and since a probability cannot be negativ $P(B)$ cannot be $0.3$.

For $P(B)=0.7$ : Substituting at the above equality we get an acceptable probability. But substituting at $P(A\cup B)=P(A)+P(B)-P(A\cap B)$ we get that $P(A\cup B)=1.1$ and since a probability cannot be greater than $1$ $P(B)$ cannot be $0.7$.

Is everything correct? :unsure:
 
Yep. (Nod)p

We can verify by drawing a Venn diagram. (Nerd)
 
Last edited:
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 7 ·
Replies
7
Views
727
Replies
10
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 62 ·
3
Replies
62
Views
4K