MHB How to Solve a Complex Radical Equation?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Radical
AI Thread Summary
The equation $\sqrt{x+\sqrt{x+11}}+\sqrt{x+\sqrt{x-11}}=4$ poses a challenge in finding solutions. It is noted that both functions involved, $f(x)$ and $g(x)$, are monotonically increasing, with $f$ defined for $x \geq 11$. At the lower boundary of this domain, the sum of the functions exceeds 4, indicating that no real solutions exist. The discussion concludes that if complex solutions are not permitted, the equation has no solution. Understanding the behavior of these functions is crucial for tackling similar radical equations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Problem:
Solve for x in the following equation:
$\sqrt{x+\sqrt{x+11}}+\sqrt{x+\sqrt{x+-11}}=4$

I have not attempted this particular problem simply because I haven't the faintest idea how to even start it...

Could anyone please give me some hints on how to approach it, please?

Many thanks in advance.
 
Mathematics news on Phys.org
If you're not allowed in the complex world, there is no solution. Proof: let
$$f(x)= \sqrt{x+ \sqrt{x-11}} \quad \text{and} \quad g(x)= \sqrt{x+ \sqrt{x+11}}.$$
It is fairly easy to see that both functions are monotonically increasing. The domain of $f$ is $[11,\infty)$, but at the lower endpoint, $f(11)= \sqrt{11}$ and $g(11)= \sqrt{11+ \sqrt{22}}$. The sum of $f$ and $g$ at $11$ is definitely greater than $4$, since
$$ \sqrt{11}+ \sqrt{11+ \sqrt{22}} \ge 3+ \sqrt{11+ 4} \ge 3+ \sqrt{9} = 6.$$
 
Last edited:
Ackbach said:
If you're not allowed in the complex world, there is no solution. Proof: let
$$f(x)= \sqrt{x+ \sqrt{x-11}} \quad \text{and} \quad g(x)= \sqrt{x+ \sqrt{x+11}}.$$
It is fairly easy to see that both functions are monotonically increasing. The domain of $f$ is $[11,\infty)$, but at the lower endpoint, $f(11)= \sqrt{11}$ and $g(11)= \sqrt{11+ \sqrt{22}}$. The sum of $f$ and $g$ at $11$ is definitely greater than $4$, since
$$ \sqrt{11}+ \sqrt{11+ \sqrt{22}} \ge 3+ \sqrt{11+ 4} \ge 3+ \sqrt{9} = 6.$$

Hi Ackbach, thanks for pointing this out to me.:)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
4
Views
1K
Replies
7
Views
2K
Replies
12
Views
3K
Replies
5
Views
1K
Back
Top