MHB How to Solve a Log Equation with Different Bases?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Log
AI Thread Summary
To solve the log equation log_16(3x-1) = log_4(3x) + log_4(0.5), first recognize that log_16 can be converted to base 4. Since 16 is 4 squared, log_16(x) can be expressed as (1/2)log_4(x). This allows for the equation to be rewritten with a common base: (1/2)log_4(3x-1) = log_4(3x) + log_4(0.5). By applying logarithmic properties, the equation can be simplified and solved for x. Understanding these conversions and properties is key to solving logarithmic equations with different bases.
mathdad
Messages
1,280
Reaction score
0
Solve the log equation

log_16 (3x-1)=log_4 (3x) + log_4 (0.5)

Can someone get me started?

The left side has base 16 and the right side base 4.

How is this done when two different bases are involved?
 
Mathematics news on Phys.org
By definition of logarithm, $\log_{16}x$ is the number $a$ such that $16^a=x$. Note that $16^a=(4^2)^a=4^{2a}$. Therefore, if $\log_{16}x=a$, then $\log_4x=2a=2\log_{16}x$.
 
Evgeny.Makarov said:
By definition of logarithm, $\log_{16}x$ is the number $a$ such that $16^a=x$. Note that $16^a=(4^2)^a=4^{2a}$. Therefore, if $\log_{16}x=a$, then $\log_4x=2a=2\log_{16}x$.

I don't get it.
 
The quality of information you'll get as help is proportional to how much you reveal about what you understand, where the difficulty is for you and why.
 
RTCNTC said:
Solve the log equation

log_16 (3x-1)=log_4 (3x) + log_4 (0.5)

Can someone get me started?

The left side has base 16 and the right side base 4.

How is this done when two different bases are involved?
Do you know what "log_16" means? In particular, do you know that, for any positive x, if y= log_16(x) then x= 16^y? Of course 16= 4^2 so x= (4^2)^y= 4^(2y).

Now, take the logarithm base 4: since x= 4^(2y), 2y= log_4(x) so y= (1/2) log_4(x).

You can replace "log_16(3x- 1)" with "(1/2)log_4(3x- 1)" and have the same base:
(1/2)log_4(3x-1)= log_4(3x)+ log_4(0.5).

Now use the laws of logarithms to solve for x.
 
Thank you everyone.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
1
Views
3K
Replies
15
Views
3K
Replies
5
Views
2K
Replies
3
Views
2K
Replies
2
Views
2K
Replies
1
Views
1K
Replies
2
Views
3K
Back
Top