MHB How to Solve a PDE with an External Function?

  • Thread starter Thread starter Markov2
  • Start date Start date
  • Tags Tags
    Function Pde
Markov2
Messages
149
Reaction score
0
Consider the equation

$\begin{aligned} & {{u}_{t}}=K{{u}_{xx}}+g(t),\text{ }0<x<L,\text{ }t>0, \\
& {{u}_{x}}(0,t)={{u}_{x}}(L,t)=0,\text{ }t>0 \\
& u(x,0)=f(x), \\
\end{aligned}
$

a) Show that $v=u-G(t)$ satisfies the initial value boundary problem where $G(t)$ is the primitive of $g(t)$ with $g(0)=0$

b) Find the solution when $g(t)=\cos wt$ and $f(x)=0.$

Attempts:

Okay so I have $g(t)=\displaystyle\int_0^t G(t)\,ds,$ is that how do I need to proceed?
 
Physics news on Phys.org
Markov said:
Consider the equation

$\begin{aligned} & {{u}_{t}}=K{{u}_{xx}}+g(t),\text{ }0<x<L,\text{ }t>0, \\
& {{u}_{x}}(0,t)={{u}_{x}}(L,t)=0,\text{ }t>0 \\
& u(x,0)=f(x), \\
\end{aligned}
$

a) Show that $v=u-G(t)$ satisfies the initial value boundary problem where $G(t)$ is the primitive of $g(t)$ with $g(0)=0$

b) Find the solution when $g(t)=\cos wt$ and $f(x)=0.$

Attempts:

Okay so I have $g(t)=\displaystyle\int_0^t G(t)\,ds,$ is that how do I need to proceed?

Hi Markov, :)

"Primitive" means the anti-derivative(Refer this). Therefore, \(G'(t)=g(t)\).

\[v=u-G(t)\]

\[\Rightarrow v_{t}=u_{t}-g(t)\mbox{ and }v_{xx}=u_{xx}\]

Substituting these in the original equation we get, \(v_{t}=Kv_{xx}+2g(t)\). Therefore \(v=u-G(t)\) is not a solution of the given partial differential equation.

Kind Regards,
Sudharaka.
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K