MHB How to Solve for Equations of Demand and Supply with Given Price Elasticity?

  • Thread starter Thread starter abigmole
  • Start date Start date
abigmole
Messages
1
Reaction score
0
The current price in the market for bananas is $0.10 per pound. At
this price, 1 million pounds are sold per year in Small-town, Malaysia.
Suppose that the price elasticity of demand is -5 and the short run
price elasticity of supply is 0.05. Solve for the equations of demand
and supply, assuming that demand and supply are linear.Hi, was given this question to do and I'm lost! Anyone knows how to solve this?

Would greatly appreciate any form of help! Thanks!
 
Mathematics news on Phys.org
abigmole said:
The current price in the market for bananas is $0.10 per pound. At
this price, 1 million pounds are sold per year in Small-town, Malaysia.
Suppose that the price elasticity of demand is -5 and the short run
price elasticity of supply is 0.05. Solve for the equations of demand
and supply, assuming that demand and supply are linear.Hi, was given this question to do and I'm lost! Anyone knows how to solve this?

Would greatly appreciate any form of help! Thanks!

Hi abigmole, :)

Let \(P\) be the price, \(Q_{d}\) be the quantity demanded and \(Q_{s}\) be the quantity supplied. Since the demand and supply curves are linear those curves could be represented by,

\[P=aQ_{d}+b\mbox{ and }P=cQ_{s}+d\]

The elasticity of demand and supply are defined by,

\[E_{d}=\frac{P}{Q_{d}}\frac{dQ_{d}}{dP}\mbox{ and }E_{s}=\frac{P}{Q_{s}}\frac{dQ_{s}}{dP}\]

\[\therefore E_{d}=\frac{1}{a}\frac{P}{Q_{d}}\mbox{ and }E_{s}=\frac{1}{c}\frac{P}{Q_{s}}\]

It is given that \(E_{d}=-5\mbox{ and }E_{s}=0.05\). Since this market is in a economic equilibrium situation, \[\frac{P}{Q_{d}}=\frac{P}{Q_{s}}=\frac{0.1\times 10^{6}}{10^{6}}=0.1\]

I hope you can do the rest yourself. You have to find the values of \(a\) and \(b\). Then consider the equilibrium point so that you can solve for \(c\) and \(d\) in the supply and demand curves.

Kind Regards,
Sudharaka.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top