MHB How to Solve Laplace Transforms with a Fractional Term?

Click For Summary
The discussion focuses on solving the inverse Laplace transform of a given expression involving a fractional term. Participants reference standard Laplace transform tables, noting the forms for cosine and sine transforms, and express uncertainty about how to adapt these for a different denominator structure. A participant suggests rewriting the expression to utilize the hyperbolic sine and cosine transforms, leading to a solution involving exponential functions. The conversation concludes with a confirmation of understanding the mathematical approach to proceed with the calculations.
rannasquaer
Messages
6
Reaction score
0
How to solve the transforms below

\[ \mathscr{L}^{-1} \frac{a(s+2 \lambda)+b}{(s+ \lambda)^2- \omega^2} \]
 
Mathematics news on Phys.org
rannasquaer said:
How to solve the transforms below

\[ \mathscr{L}^{-1} \frac{a(s+2 \lambda)+b}{(s+ \lambda)^2- \omega^2} \]

The table of Laplace transforms lists that $\mathscr{L}^{-1} \frac{s+\alpha}{(s+\alpha)^2+\omega^2} = e^{-\alpha t}\cos(\omega t)\cdot u(t)$ and $\mathscr{L}^{-1} \frac{\omega}{(s+\alpha)^2+\omega^2} = e^{-\alpha t}\sin(\omega t)\cdot u(t)$.

Can we use those to find the requested transform?
 
Klaas van Aarsen said:
The table of Laplace transforms lists that $\mathscr{L}^{-1} \frac{s+\alpha}{(s+\alpha)^2+\omega^2} = e^{-\alpha t}\cos(\omega t)\cdot u(t)$ and $\mathscr{L}^{-1} \frac{\omega}{(s+\alpha)^2+\omega^2} = e^{-\alpha t}\sin(\omega t)\cdot u(t)$.

Can we use those to find the requested transform?

I think yes, if I rewrite like

\[ \mathscr{L}^{-1} \frac{a(s+\lambda)}{(s+ \lambda)^2- \omega^2} + \mathscr{L}^{-1} \frac{b + \lambda a}{(s+ \lambda)^2- \omega^2} \]

but I have \[ (s+\lambda)^2-\omega^2 \] and not \[ (s+\lambda)^2+\omega^2 \]

The table of Laplace transforms lists that \[ \mathscr{L}^{-1} \frac{\alpha}{s^2- \alpha^2} = \sin h(\alpha t).u(t) \] and \[ \mathscr{L}^{-1} \frac{s}{s^2- \alpha^2} = \cos h(\alpha t).u(t) \]

I do not know what to do now
 
rannasquaer said:
I think yes, if I rewrite like

\[ \mathscr{L}^{-1} \frac{a(s+\lambda)}{(s+ \lambda)^2- \omega^2} + \mathscr{L}^{-1} \frac{b + \lambda a}{(s+ \lambda)^2- \omega^2} \]

but I have \[ (s+\lambda)^2-\omega^2 \] and not \[ (s+\lambda)^2+\omega^2 \]

The table of Laplace transforms lists that \[ \mathscr{L}^{-1} \frac{\alpha}{s^2- \alpha^2} = \sin h(\alpha t).u(t) \] and \[ \mathscr{L}^{-1} \frac{s}{s^2- \alpha^2} = \cos h(\alpha t).u(t) \]

I do not know what to do now

Right. I meant the $\cosh$ and $\sinh$ versions.

Also note that $\mathscr{L}^{-1} F(s-\alpha)=e^{\alpha t}f(t)$.

So we can do:
\[ \mathscr{L}^{-1} \frac{a(s+\lambda)}{(s+ \lambda)^2- \omega^2} + \mathscr{L}^{-1} \frac{b + \lambda a}{(s+ \lambda)^2- \omega^2} =a e^{-\lambda t}\sinh(\omega t) \cdot u(t)+ \frac{b+\lambda a}{\omega}e^{-\lambda t}\cosh(\omega t) \cdot u(t)\]
And if we want to, we can rewrite it using $\sinh x= \frac 12(e^x-e^{-x})$ and $\cosh x=\frac 12(e^x + e^{-x})$.
 
Great, I understood how to continue to do the math. Thank you!😄
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K