MHB How to Solve Laplace Transforms with a Fractional Term?

rannasquaer
Messages
6
Reaction score
0
How to solve the transforms below

\[ \mathscr{L}^{-1} \frac{a(s+2 \lambda)+b}{(s+ \lambda)^2- \omega^2} \]
 
Mathematics news on Phys.org
rannasquaer said:
How to solve the transforms below

\[ \mathscr{L}^{-1} \frac{a(s+2 \lambda)+b}{(s+ \lambda)^2- \omega^2} \]

The table of Laplace transforms lists that $\mathscr{L}^{-1} \frac{s+\alpha}{(s+\alpha)^2+\omega^2} = e^{-\alpha t}\cos(\omega t)\cdot u(t)$ and $\mathscr{L}^{-1} \frac{\omega}{(s+\alpha)^2+\omega^2} = e^{-\alpha t}\sin(\omega t)\cdot u(t)$.

Can we use those to find the requested transform?
 
Klaas van Aarsen said:
The table of Laplace transforms lists that $\mathscr{L}^{-1} \frac{s+\alpha}{(s+\alpha)^2+\omega^2} = e^{-\alpha t}\cos(\omega t)\cdot u(t)$ and $\mathscr{L}^{-1} \frac{\omega}{(s+\alpha)^2+\omega^2} = e^{-\alpha t}\sin(\omega t)\cdot u(t)$.

Can we use those to find the requested transform?

I think yes, if I rewrite like

\[ \mathscr{L}^{-1} \frac{a(s+\lambda)}{(s+ \lambda)^2- \omega^2} + \mathscr{L}^{-1} \frac{b + \lambda a}{(s+ \lambda)^2- \omega^2} \]

but I have \[ (s+\lambda)^2-\omega^2 \] and not \[ (s+\lambda)^2+\omega^2 \]

The table of Laplace transforms lists that \[ \mathscr{L}^{-1} \frac{\alpha}{s^2- \alpha^2} = \sin h(\alpha t).u(t) \] and \[ \mathscr{L}^{-1} \frac{s}{s^2- \alpha^2} = \cos h(\alpha t).u(t) \]

I do not know what to do now
 
rannasquaer said:
I think yes, if I rewrite like

\[ \mathscr{L}^{-1} \frac{a(s+\lambda)}{(s+ \lambda)^2- \omega^2} + \mathscr{L}^{-1} \frac{b + \lambda a}{(s+ \lambda)^2- \omega^2} \]

but I have \[ (s+\lambda)^2-\omega^2 \] and not \[ (s+\lambda)^2+\omega^2 \]

The table of Laplace transforms lists that \[ \mathscr{L}^{-1} \frac{\alpha}{s^2- \alpha^2} = \sin h(\alpha t).u(t) \] and \[ \mathscr{L}^{-1} \frac{s}{s^2- \alpha^2} = \cos h(\alpha t).u(t) \]

I do not know what to do now

Right. I meant the $\cosh$ and $\sinh$ versions.

Also note that $\mathscr{L}^{-1} F(s-\alpha)=e^{\alpha t}f(t)$.

So we can do:
\[ \mathscr{L}^{-1} \frac{a(s+\lambda)}{(s+ \lambda)^2- \omega^2} + \mathscr{L}^{-1} \frac{b + \lambda a}{(s+ \lambda)^2- \omega^2} =a e^{-\lambda t}\sinh(\omega t) \cdot u(t)+ \frac{b+\lambda a}{\omega}e^{-\lambda t}\cosh(\omega t) \cdot u(t)\]
And if we want to, we can rewrite it using $\sinh x= \frac 12(e^x-e^{-x})$ and $\cosh x=\frac 12(e^x + e^{-x})$.
 
Great, I understood how to continue to do the math. Thank you!😄
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top