How to solve this partial differential equation which is a Laplace equation

  • #1
dimension10
371
0
I was trying to solve this partial differential equation which arose because I wanted to find a general solution to the Laplace equation in the case f=f(x,y).

[tex]\frac{{\partial}^{2}f}{{\partial x}^{2}}+\frac{{\partial}^{2}f}{{\partial y}^{2}}=0[/tex]

Thanks in advance.
 

Answers and Replies

  • #2
romsofia
550
239
The general solution would be a harmonic function, if there was a general solution for an unbounded Laplace equation. The reason why I said "would be" is because without bounds, the Laplace equation has an infinite number of solutions.

You really have to give the boundary conditions when dealing with Laplace equation, and in general for PDEs, boundary and initial conditions.
 
  • #3
jackmell
1,800
53
The general solution is:

[tex]f(x,y)=g(z)+h(\overline{z}),\quad z=x+iy[/tex]

where g and h are arbitrary [itex]C^2[/itex] functions of a single variable z=x+iy. We can show this by factoring the equation:

[tex]\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right) f=\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)\left(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y}\right)=\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)u=0[/tex]

where:

[tex]u=\frac{\partial f}{\partial x}+i\frac{\partial f}{\partial y}[/tex]

So first solve:

[tex]u_t-iu_x=0[/tex]

which is an easy first-order equation which turns out to be u=g(x+it) then substitute that into:

[tex]f_x+if_y=g(x+it)[/tex]

another easy one to obtain so that the general solution is:

[tex]f(x,y)=g(x+it)+h(x-it)[/tex]

Note that means the general solution is not analytic since it contains [itex]\overline{z}[/itex] but analyticity is not a requirement for the solution but only differentiability.
 
Last edited:
  • #4
dimension10
371
0
The general solution is:

[tex]f(x,y)=g(z)+h(\overline{z}),\quad z=x+iy[/tex]

where g and h are arbitrary [itex]C^2[/itex] functions of a single variable z=x+iy. We can show this by factoring the equation:

[tex]\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right) f=\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)\left(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y}\right)=\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)u=0[/tex]

where:

[tex]u=\frac{\partial f}{\partial x}+i\frac{\partial f}{\partial y}[/tex]

So first solve:

[tex]u_t-iu_x=0[/tex]

which is an easy first-order equation which turns out to be u=g(x+it) then substitute that into:

[tex]f_x+if_y=g(x+it)[/tex]

another easy one to obtain so that the general solution is:

[tex]f(x,y)=g(x+it)+h(x-it)[/tex]

Note that means the general solution is not analytic since it contains [itex]\overline{z}[/itex] but analyticity is not a requirement for the solution but only differentiability.

Thanks.
 

Suggested for: How to solve this partial differential equation which is a Laplace equation

Replies
10
Views
1K
Replies
2
Views
2K
Replies
2
Views
4K
Replies
1
Views
2K
Replies
7
Views
3K
Replies
14
Views
2K
  • Last Post
Replies
7
Views
3K
Replies
1
Views
2K
Replies
7
Views
18K
Replies
10
Views
7K
Top