MHB How to Verify the Complex Integral Equals π/(1+n)?

Click For Summary
The discussion focuses on proving the complex integral $$\int_{0}^{2\pi}\mathrm dt{\sin t\over \sin t+ i\sqrt{n+\cos^2 t}}={\pi\over 1+n}$$ for $n \ne -1$. Participants explore various mathematical techniques, including contour integration and residue theorem, to validate the equation. The integral's behavior is analyzed over the interval from 0 to 2π, emphasizing the role of the imaginary unit $i$ and the function's periodicity. Key points include the simplification of the integrand and the application of limits to handle the complex components. The discussion ultimately aims to establish a rigorous proof for the stated equality.
Tony1
Messages
9
Reaction score
0
How to prove this integral,

$$\int_{0}^{2\pi}\mathrm dt{\sin t\over \sin t+ i\sqrt{n+\cos^2 t}}={\pi\over 1+n}$$

$n \ne -1$

$i=\sqrt{-1}$
 
Mathematics news on Phys.org
Tony said:
How to prove this integral,

$$\int_{0}^{2\pi}\mathrm dt{\sin t\over \sin t+ i\sqrt{n+\cos^2 t}}={\pi\over 1+n}$$

$n \ne -1$

$i=\sqrt{-1}$
Rationalise the fraction: $$\frac{\sin t}{ \sin t+ i\sqrt{n+\cos^2 t}} = \frac{\sin t\bigl( \sin t - i\sqrt{n+\cos^2 t}\bigr)}{1+n}.$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K