- 2,243
- 169
I don't know if the technical papers are still available. They likely are however
"The newly-released WMAP data are now sufficiently sensitive to test dark energy, providing important new information with no reliance on previous supernovae results. The combination of WMAP and other data** limits the extent to which dark energy deviates from Einstein's cosmological constant. The simplest model (a flat universe with a cosmological constant) fits the data remarkably well. The new data constrain the dark energy to be within 14% of the expected value for a cosmological constant, while the geometry must be flat to better than 1%. The simplest model: a flat universe with a cosmological constant, fits the data remarkably well.
In more technical terms, for a flat universe, the dark energy "equation of state" parameter is -1.1 � 0.14, consistent with the cosmological constant (value of -1). If the dark energy is a cosmological constant, then these data constrain the curvature parameter to be within -0.77% and +0.31%, consistent with a flat universe (value of 0)."
https://map.gsfc.nasa.gov/news/7yr_release.html
"The newly-released WMAP data are now sufficiently sensitive to test dark energy, providing important new information with no reliance on previous supernovae results. The combination of WMAP and other data** limits the extent to which dark energy deviates from Einstein's cosmological constant. The simplest model (a flat universe with a cosmological constant) fits the data remarkably well. The new data constrain the dark energy to be within 14% of the expected value for a cosmological constant, while the geometry must be flat to better than 1%. The simplest model: a flat universe with a cosmological constant, fits the data remarkably well.
In more technical terms, for a flat universe, the dark energy "equation of state" parameter is -1.1 � 0.14, consistent with the cosmological constant (value of -1). If the dark energy is a cosmological constant, then these data constrain the curvature parameter to be within -0.77% and +0.31%, consistent with a flat universe (value of 0)."
https://map.gsfc.nasa.gov/news/7yr_release.html