willem2 said:
The groups are certainly isomorphic.
It doesn't become right by repetition!
Suppose f is a function from z[X] to Q+. We must have f(0) = 1. (identities of the groups)
Suppose f(1) = a0, then f(2) must be a02, f(-1) must be 1/a0, and f(n) must be a0n.
The same can be said about f(0)=1, F(X)=a1, F(2X) =a12 etc, so you get all powers of a1
Now all of those powers must be different numbers, or you'll get strange polynomial identies like a0 = a1 X
You defined ##f\, : \,\mathbb{Z}[x]\longrightarrow \mathbb{Q}^+## by ##f(1)=a_0## which automatically gives us by ##f(z)=f(1+(z-1))=f(1)f(z-1)=a_0f(z-1)## all other values of constant polynomials. Next you defined -
I assume - ##f(x^n)=a_n##. In short we have for ##p(x)=p_nx^n+\ldots +p_0## a function ##f(p)=p_na_n+\ldots p_1a_1+p_0a_0##.
Now we have to check the following properties:
- Is ##f## well-defined?
- Is ##f## a homomorphism?
- Is ##f## injective?
- Is ##f## surjective?
As polynomials are given by the sequence ##(p_0,\ldots,p_n)## and a sequence ##(a_n)_{n\in \mathbb{N}}## is chosen in advance to set up the function, there will be no two different images for ##f(p)## possible.
1. Check.
Since we defined ##f## by the rule ##f(p-q)=f(p)f(q)^{-1}## we automatically have a homomorphism per construction.
2. Check.
For injectivity, we must show, that ##f(p)=f(q)## implies ##p=q##. So given ##f(p)=p_na_n+\ldots p_1a_1+p_0a_0=q_ma_m+\ldots q_1a_1+q_0a_0=f(q)##, how do you guarantee that ##n=m## and ##p_j=q_j## for all ##j=0,\ldots, n\,?##
For surjectivity, we must show that for any positive rational number ##\dfrac{s}{t}## there is a way to write ##\dfrac{s}{t}=p_na_n+\ldots p_1a_1+p_0a_0## for suitable ##p_0,\ldots,p_n## by our given choice of ##a_n\,.##How do you find those ##p_j\,?##
What condition must the sequence a0, a1, a2, ... satisfy that all of the powers are different. There is a fairly simple example.
My suggestion is to choose ##a_n## to be the inverse of ##n-##th prime number: ##a_0=\dfrac{1}{2},a_1=\dfrac{1}{3},a_2=\dfrac{1}{5},a_3=\dfrac{1}{7},\ldots ##. Can you now check point 3. and 4.?